Real-time, high-resolution imaging of tumor cells in genetically engineered and orthotopic models of thyroid cancer

in Endocrine-Related Cancer
Authors:
Xhesika Shanja-Grabarz Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA

Search for other papers by Xhesika Shanja-Grabarz in
Current site
Google Scholar
PubMed
Close
,
Anouchka Coste Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA

Search for other papers by Anouchka Coste in
Current site
Google Scholar
PubMed
Close
,
David Entenberg Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA

Search for other papers by David Entenberg in
Current site
Google Scholar
PubMed
Close
, and
Antonio Di Cristofano Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA

Search for other papers by Antonio Di Cristofano in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2537-3228

Correspondence should be addressed to D Entenberg or A Di Cristofano: david.entenberg@einsteinmed.org or antonio.dicristofano@einsteinmed.org

*(X Shanja-Grabarz and A Coste contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Genetically engineered and orthotopic xenograft mouse models have been instrumental for increasing our understanding of thyroid cancer progression and for the development of novel therapeutic approaches in a setting that is more physiologically relevant than the classical subcutaneous flank implants. However, the anatomical location of the thyroid gland precludes a non-invasive analysis at the cellular level of the interactions between tumor cells and the surrounding microenvironment and does not allow a real-time evaluation of the response of tumor cells to drug treatments. As a consequence, such studies have generally only relied on endpoint approaches, limiting the amount and depth of the information that could be gathered. Here we describe the development of an innovative approach to imaging specific aspects of thyroid cancer biology, based on the implantation of a permanent, minimally invasive optical window that allows high-resolution, multi-day, intravital imaging of the behavior and cellular dynamics of thyroid tumors in the mouse. We show that this technology allows visualization of fluorescently tagged tumor cells both in immunocompetent, genetically engineered mouse models of anaplastic thyroid cancer (ATC) and in immunocompromised mice carrying orthotopic implanted human or mouse ATC cells. Furthermore, the use of recipient mice in which endothelial cells and macrophages are fluorescently labeled allows the detection of the spatial and functional relationship between tumor cells and their microenvironment. Finally, we show that ATC cells expressing a fluorescent biosensor for caspase 3 activity can be effectively utilized to evaluate, in real-time, the efficacy and kinetics of action of novel small molecule therapeutics. This novel approach to intravital imaging of thyroid cancer represents a platform that will allow, for the first time, the longitudinal, in situ analysis of tumor cell responses to therapy and of their interaction with the microenvironment.

Supplementary Materials

    • Movie 1, Time lapse movie of N794 cells orthotopically injected into the right thyroid lobe of a Rag2-/- Mac-blue/ve-cadherin tomato mouse. Green = GFP+ tumor cells, Red = tdTomato+ endothelia, Cyan = CFP+ macrophages. FOV = 240 x 340 µm2
    • Movie 2, Time lapse movie of N794 cells orthotopically injected into the right thyroid lobe of a Rag2-/- Mac-blue/ve-cadherin tomato mouse. Green = GFP+ tumor cells, Red = tdTomato+ endothelia, Cyan = CFP+ macrophages. FOV = 240 x 340 µm2

 

  • Collapse
  • Expand
  • Antico Arciuch VG, Russo MA, Dima M, Kang KS, Dasrath F, Liao XH, Refetoff S, Montagna C & Di Cristofano A 2011 Thyrocyte-specific inactivation of p53 and Pten results in anaplastic thyroid carcinomas faithfully recapitulating human tumors. Oncotarget 2 11091126. (https://doi.org/10.18632/oncotarget.380)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baudino TA 2015 Targeted cancer therapy: the next generation of cancer treatment. Current Drug Discovery Technologies 12 320. (https://doi.org/10.2174/1570163812666150602144310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonapace L, Wyckoff J, Oertner T, Van Rheenen J, Junt T & Bentires-Alj M 2012 If you don’t look, you won’t see: intravital multiphoton imaging of primary and metastatic breast cancer. Journal of Mammary Gland Biology and Neoplasia 17 125129. (https://doi.org/10.1007/s10911-012-9250-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Z, Ross JL & Hambardzumyan D 2019 Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. PNAS 116 1425414259. (https://doi.org/10.1073/pnas.1902366116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cidado J, Secrist JP, Gibbons FD, Hennessy EJ, Ioannidis S & Clark EA 2018 AZD4320 is a potent, dual Bcl-2/xL inhibitor that rapidly induces apoptosis in preclinical hematologic tumor models. Cancer Research 78 (13 Suppl) abstract 311. (https://doi.org/10.1158/1538-7445.AM2018-311)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Melenec P, et al.2018 Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Reports 23 33123326. (https://doi.org/10.1016/j.celrep.2018.05.038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coste A, Oktay MH, Condeelis JS & Entenberg D 2019 Intravital imaging techniques for biomedical and clinical research. Cytometry: Part A 97 448457. (https://doi.org/10.1002/cyto.a.23963)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Das S, Sarrou E, Podgrabinska S, Cassella M, Mungamuri SK, Feirt N, Gordon R, Nagi CS, Wang Y, Entenberg D, et al.2013 Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. Journal of Experimental Medicine 210 15091528. (https://doi.org/10.1084/jem.20111627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De La Cova C, Townley R, Regot S & Greenwald I 2017 A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Developmental Cell 42 542.e4553.e4. (https://doi.org/10.1016/j.devcel.2017.07.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Entenberg D, Kedrin D, Wyckoff J, Sahai E, Condeelis J & Segall JE 2013 Imaging tumor cell movement in vivo. Current Protocols in Cell Biology 58 19.7.119.7.19. (https://doi.org/10.1002/0471143030.cb1907s58)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Entenberg D, Pastoriza JM, Oktay MH, Voiculescu S, Wang Y, Sosa MS, Aguirre-Ghiso J & Condeelis J 2017 Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 128 6577. (https://doi.org/10.1016/j.ymeth.2017.07.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Entenberg D, Voiculescu S, Guo P, Borriello L, Wang Y, Karagiannis GS, Jones J, Baccay F, Oktay M & Condeelis J 2018 A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nature Methods 15 7380. (https://doi.org/10.1038/nmeth.4511)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, et al.2019 Immune and inflammatory cells in thyroid cancer microenvironment. International Journal of Molecular Sciences 20 E4413. (https://doi.org/10.3390/ijms20184413)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghaffari A, Hoskin V, Turashvili G, Varma S, Mewburn J, Mullins G, Greer PA, Kiefer F, Day AG, Madarnas Y, et al.2019 Intravital imaging reveals systemic ezrin inhibition impedes cancer cell migration and lymph node metastasis in breast cancer. Breast Cancer Research 21 12. (https://doi.org/10.1186/s13058-018-1079-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gyarmati G, Kadoya H, Moon JY, Burford JL, Ahmadi N, Gill IS, Hong YK, Dér B & Peti-Peterdi J 2018 Advances in renal cell imaging. Seminars in Nephrology 38 5262. (https://doi.org/10.1016/j.semnephrol.2017.09.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hato T, Winfree S & Dagher PC 2018 Kidney imaging: intravital microscopy. Methods in Molecular Biology 1763 129136. (https://doi.org/10.1007/978-1-4939-7762-8_12)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hui L & Chen Y 2015 Tumor microenvironment: sanctuary of the devil. Cancer Letters 368 713. (https://doi.org/10.1016/j.canlet.2015.07.039)

  • Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, Parker A, Nguyen A, Sun S, Kashemirov B, et al.2015 Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discovery 5 3542. (https://doi.org/10.1158/2159-8290.CD-14-0621)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ke CC, Liu RS, Suetsugu A, Kimura H, Ho JH, Lee OK & Hoffman RM 2013 In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells. PLoS ONE 8 e69658. (https://doi.org/10.1371/journal.pone.0069658)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, et al.2016 Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation 126 10521066. (https://doi.org/10.1172/JCI85271)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lehmann C, Fisher NB, Tugwell B & Zhou J 2016 An intravital microscopy model to study early pancreatic inflammation in type 1 diabetes in NOD mice. IntraVital 5 e1215789. (https://doi.org/10.1080/21659087.2016.1215789)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li R, Attari A, Prytyskach M, Garlin MA, Weissleder R & Miller MA 2019 Single-cell intravital microscopy of trastuzumab quantifies heterogeneous in vivo kinetics. Cytometry: Part A 97 528539. (https://doi.org/10.1002/cyto.a.23872)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malehmir M, Pfister D, Gallage S, Szydlowska M, Inverso D, Kotsiliti E, Leone V, Peiseler M, Surewaard BGJ, Rath D, et al.2019 Platelet GPIbalpha is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine 25 641655. (https://doi.org/10.1038/s41591-019-0379-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nangia V, Siddiqui FM, Caenepeel S, Timonina D, Bilton SJ, Phan N, Gomez-Caraballo M, Archibald HL, Li C, Fraser C, et al.2018 Exploiting MCL1 dependency with combination MEK + MCL1 inhibitors leads to induction of apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer. Cancer Discovery 8 15981613. (https://doi.org/10.1158/2159-8290.CD-18-0277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nucera C, Nehs MA, Mekel M, Zhang X, Hodin R, Lawler J, Nose V & Parangi S 2009 A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 19 10771084. (https://doi.org/10.1089/thy.2009.0055)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ovchinnikov DA, Van Zuylen WJ, Debats CE, Alexander KA, Kellie S & Hume DA 2008 Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. Journal of Leukocyte Biology 83 430433. (https://doi.org/10.1189/jlb.0807585)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patsialou A, Bravo-Cordero JJ, Wang Y, Entenberg D, Liu H, Clarke M & Condeelis JS 2013 Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. IntraVital 2 e25294. (https://doi.org/10.4161/intv.25294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ritsma L, Steller EJ, Beerling E, Loomans CJ, Zomer A, Gerlach C, Vrisekoop N, Seinstra D, Van Gurp L, Schafer R, et al.2012 Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Science Translational Medicine 4 158ra145. (https://doi.org/10.1126/scitranslmed.3004394)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saeidnia S, Manayi A & Abdollahi M 2015 From in vitro experiments to in vivo and clinical studies; pros and cons. Current Drug Discovery Technologies 12 218224. (https://doi.org/10.2174/1570163813666160114093140)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saini S, Tulla K, Maker AV, Burman KD & Prabhakar BS 2018 Therapeutic advances in anaplastic thyroid cancer: a current perspective. Molecular Cancer 17 154. (https://doi.org/10.1186/s12943-018-0903-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schaefer C, Schroeder M, Fuhrhop I, Viezens L, Otten J, Fiedler W, Ruther W & Hansen-Algenstaedt N 2011 Primary tumor dependent inhibition of tumor growth, angiogenesis, and perfusion of secondary breast cancer in bone. Journal of Orthopaedic Research 29 12511258. (https://doi.org/10.1002/jor.21402)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tabuchi A, Mertens M, Kuppe H, Pries AR & Kuebler WM 2008 Intravital microscopy of the murine pulmonary microcirculation. Journal of Applied Physiology 104 338346. (https://doi.org/10.1152/japplphysiol.00348.2007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, Cidado J, Embrey KJ, Gangl E, Gibbons FD, et al.2018 Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nature Communications 9 5341. (https://doi.org/10.1038/s41467-018-07551-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vennin C, Chin VT, Warren SC, Lucas MC, Herrmann D, Magenau A, Melenec P, Walters SN, Del Monte-Nieto G, Conway JR, et al.2017. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine 9 eaai8504. (https://doi.org/10.1126/scitranslmed.aai8504)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X, Xu Z, Tian Z, Zhang X, Xu D, Li Q, Zhang J & Wang T 2017 The EF-1alpha promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. Journal of Cellular and Molecular Medicine 21 30443054. (https://doi.org/10.1111/jcmm.13216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weeden CE, Ah-Cann C, Holik AZ, Pasquet J, Garnier JM, Merino D, Lessene G & Asselin-Labat ML 2018 Dual inhibition of BCL-XL and MCL-1 is required to induce tumour regression in lung squamous cell carcinomas sensitive to FGFR inhibition. Oncogene 37 44754488. (https://doi.org/10.1038/s41388-018-0268-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu T & Dai Y 2017 Tumor microenvironment and therapeutic response. Cancer Letters 387 6168. (https://doi.org/10.1016/j.canlet.2016.01.043)

  • Xu B, Fuchs TL, Dogan S, Landa I, Katabi N, Fagin JA, Tuttle RM, Sherman EJ, Gill AJ & Ghossein RM 2020 Dissecting anaplastic thyroid carcinoma (ATC): a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid [epub]. (https://doi.org/10.1089/thy.2020.0086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zaballos MA, Acuna-Ruiz A, Morante M, Crespo P & Santisteban P 2019 Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocrine-Related Cancer 26 R319R344. (https://doi.org/10.1530/ERC-19-0098)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Q, Schepis A, Huang H, Yang J, Ma W, Torra J, Zhang SQ, Yang L, Wu H, Nonell S, et al.2019 Designing a green fluorogenic protease reporter by flipping a beta strand of GFP for imaging apoptosis in animals. Journal of the American Chemical Society 141 45264530. (https://doi.org/10.1021/jacs.8b13042)

    • PubMed
    • Search Google Scholar
    • Export Citation