PRKACB variants in skeletal disease or adrenocortical hyperplasia: effects on protein kinase A

in Endocrine-Related Cancer
View More View Less
  • 1 Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
  • 2 Université de Paris, Cochin Institute, Inserm U1016, CNRS 8104, Paris, France
  • 3 Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
  • 4 Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
  • 5 Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, UK
  • 6 Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
  • 7 Center for Applied Genomics at The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
  • 8 Division of Endocrinology and Diabetes and The Center for Bone Health at The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
  • 9 University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA

Correspondence should be addressed to N Settas: nikolaos.settas@nih.gov
Restricted access

Genetic variants in components of the protein kinase A (PKA) enzyme have been associated with various defects and neoplasms in the context of Carney complex (CNC) and in isolated cases, such as in primary pigmented nodular adrenocortical disease (PPNAD), cortisol-producing adrenal adenomas (CPAs), and various cancers. PRKAR1A mutations have been found in subjects with impaired cAMP-dependent signaling and skeletal defects; bone tumors also develop in both humans and mice with PKA abnormalities. We studied the PRKACB gene in 148 subjects with PPNAD and related disorders, who did not have other PKA-related defects and identified two subjects with possibly pathogenic PRKACB gene variants and unusual bone and endocrine phenotypes. The first presented with bone and other abnormalities and carried a de novo c.858_860GAA (p.K286del) variant. The second subject carried the c.899C>T (p.T300M or p.T347M in another isoform) variant and had a PPNAD-like phenotype. Both variants are highly conserved in the PRKACB gene. In functional studies, the p.K286del variant affected PRKACB protein stability and led to increased PKA signaling. The p.T300M variant did not affect protein stability or response to cAMP and its pathogenicity remains uncertain. We conclude that PRKACB germline variants are uncommon but may be associated with phenotypes that resemble those of other PKA-related defects. However, detailed investigation of each variant is needed as PRKACB appears to be only rarely affected in these conditions, and variants such as p.T300M maybe proven to be clinically insignificant, whereas others (such as p.K286del) are clearly pathogenic and may be responsible for a novel syndrome, associated with endocrine and skeletal abnormalities.

Supplementary Materials

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 133 133 133
Full Text Views 12 12 12
PDF Downloads 9 9 9
  • Bathon K, Weigand I, Vanselow JT, Ronchi CL, Sbiera S, Schlosser A, Fassnacht M & Calebiro D 2019 Alterations in protein kinase A substrate specificity as a potential cause of Cushing syndrome. Endocrinology 160 447459. (https://doi.org/10.1210/en.2018-00775)

    • Search Google Scholar
    • Export Citation
  • Bertherat J, Groussin L, Sandrini F, Matyakhina L, Bei T, Stergiopoulos S, Papageorgiou T, Bourdeau I, Kirschner LS & Vincent-Dejean C et al. 2003 Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Research 63 53085319.

    • Search Google Scholar
    • Export Citation
  • Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, Libe R, Rene-Corail F, Stergiopoulos S & Bourdeau I et al. 2009 Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. Journal of Clinical Endocrinology and Metabolism 94 20852091. (https://doi.org/10.1210/jc.2008-2333)

    • Search Google Scholar
    • Export Citation
  • Beuschlein F, Fassnacht M, Assie G, Calebiro D, Stratakis CA, Osswald A, Ronchi CL, Wieland T, Sbiera S & Faucz FR et al. 2014 Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. New England Journal of Medicine 370 10191028. (https://doi.org/10.1056/NEJMoa1310359)

    • Search Google Scholar
    • Export Citation
  • Calebiro D, Hannawacker A, Lyga S, Bathon K, Zabel U, Ronchi C, Beuschlein F, Reincke M, Lorenz K & Allolio B et al. 2014 PKA catalytic subunit mutations in adrenocortical Cushing’s adenoma impair association with the regulatory subunit. Nature Communications 5 5680. (https://doi.org/10.1038/ncomms6680)

    • Search Google Scholar
    • Export Citation
  • Calebiro D, Bathon K & Weigand I 2017 Mechanisms of aberrant PKA activation by Calpha subunit mutations. Hormone and Metabolic Research 49 307314. (https://doi.org/10.1055/s-0042-112817)

    • Search Google Scholar
    • Export Citation
  • Carney JA, Boccon-Gibod L, Jarka DE, Tanaka Y, Swee RG, Unni KK & Stratakis CA 2001 Osteochondromyxoma of bone: a congenital tumor associated with lentigines and other unusual disorders. American Journal of Surgical Pathology 25 164176 (https://doi.org/10.1097/00000478-200102000-00004)

    • Search Google Scholar
    • Export Citation
  • Carney JA, Lyssikatos C, Lodish MB & Stratakis CA 2015 Germline PRKACA amplification leads to Cushing syndrome caused by 3 adrenocortical pathologic phenotypes. Human Pathology 46 4049. (https://doi.org/10.1016/j.humpath.2014.09.005)

    • Search Google Scholar
    • Export Citation
  • Courcoutsakis NA, Patronas NJ, Cassarino D, Griffin K, Keil M, Ross JL, Carney JA & Stratakis CA 2004 Hypodense nodularity on computed tomography: novel imaging and pathology of micronodular adrenocortical hyperplasia associated with myelolipomatous changes. Journal of Clinical Endocrinology and Metabolism 89 37373738. (https://doi.org/10.1210/jc.2004-0055)

    • Search Google Scholar
    • Export Citation
  • Di Dalmazi G, Kisker C, Calebiro D, Mannelli M, Canu L, Arnaldi G, Quinkler M, Rayes N, Tabarin A & Laure Jullie M et al. 2014 Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing’s syndrome: a European multicentric study. Journal of Clinical Endocrinology and Metabolism 99 E2093E 2100. (https://doi.org/10.1210/jc.2014-2152)

    • Search Google Scholar
    • Export Citation
  • Enns LC, Morton JF, Mangalindan RS, McKnight GS, Schwartz MW, Kaeberlein MR, Kennedy BK, Rabinovitch PS & Ladiges WC 2009 Attenuation of age-related metabolic dysfunction in mice with a targeted disruption of the Cbeta subunit of protein kinase A. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 64 12211231. (https://doi.org/10.1093/gerona/glp133)

    • Search Google Scholar
    • Export Citation
  • Enns LC, Bible KL, Emond MJ & Ladiges WC 2010 Mice lacking the Cbeta subunit of PKA are resistant to angiotensin II-induced cardiac hypertrophy and dysfunction. BMC Research Notes 3 307. (https://doi.org/10.1186/1756-0500-3-307)

    • Search Google Scholar
    • Export Citation
  • Espiard S, Knape MJ, Bathon K, Assie G, Rizk-Rabin M, Faillot S, Luscap-Rondof W, Abid D, Guignat L & Calebiro D et al. 2018 Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight 3 e98296. (https://doi.org/10.1172/jci.insight.98296)

    • Search Google Scholar
    • Export Citation
  • Forlino A, Vetro A, Garavelli L, Ciccone R, London E, Stratakis CA & Zuffardi O 2014 PRKACB and Carney complex. New England Journal of Medicine 370 10651067. (https://doi.org/10.1056/NEJMc1309730)

    • Search Google Scholar
    • Export Citation
  • Guthrie CR, Skalhegg BS & McKnight GS 1997 Two novel brain-specific splice variants of the murine Cbeta gene of cAMP-dependent protein kinase. Journal of Biological Chemistry 272 2956029565. (https://doi.org/10.1074/jbc.272.47.29560)

    • Search Google Scholar
    • Export Citation
  • Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, Lim II, Gleason CE, Murphy JM, Rosenberg BR & Teegan L et al. 2014 Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 343 10101014. (https://doi.org/10.1126/science.1249484)

    • Search Google Scholar
    • Export Citation
  • Horvath A, Bertherat J, Groussin L, Guillaud-Bataille M, Tsang K, Cazabat L, Libe R, Remmers E, Rene-Corail F & Faucz FR et al. 2010 Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Human Mutation 31 369379. (https://doi.org/10.1002/humu.21178)

    • Search Google Scholar
    • Export Citation
  • Howe DG, Wiley JC & McKnight GS 2002 Molecular and behavioral effects of a null mutation in all PKA C beta isoforms. Molecular and Cellular Neurosciences 20 515524. (https://doi.org/10.1006/mcne.2002.1119)

    • Search Google Scholar
    • Export Citation
  • Huang Y, Roelink H & McKnight GS 2002 Protein kinase A deficiency causes axially localized neural tube defects in mice. Journal of Biological Chemistry 277 1988919896. (https://doi.org/10.1074/jbc.M111412200)

    • Search Google Scholar
    • Export Citation
  • Huang Y, Huang Y, Zhang L, Chang A, Zhao P, Chai X & Wang J 2018 Identification of crucial genes and prediction of small molecules for multidrug resistance of Hodgkin’s lymphomas. Cancer Biomarkers: Section A of Disease Markers 23 495503. (https://doi.org/10.3233/CBM-181496)

    • Search Google Scholar
    • Export Citation
  • Ihara T, Hosokawa Y, Kumazawa K, Ishikawa K, Fujimoto J, Yamamoto M, Muramkami T, Goshima N, Ito E & Watanabe S et al. 2017 An in vivo screening system to identify tumorigenic genes. Oncogene 36 20232029. (https://doi.org/10.1038/onc.2016.351)

    • Search Google Scholar
    • Export Citation
  • Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, Cho-Chung YS & Stratakis CA 2000 Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nature Genetics 26 8992. (https://doi.org/10.1038/79238)

    • Search Google Scholar
    • Export Citation
  • Linglart A, Menguy C, Couvineau A, Auzan C, Gunes Y, Cancel M, Motte E, Pinto G, Chanson P & Bougneres P et al. 2011 Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. New England Journal of Medicine 364 22182226. (https://doi.org/10.1056/NEJMoa1012717)

    • Search Google Scholar
    • Export Citation
  • Liu S, Saloustros E, Mertz EL, Tsang K, Starost MF, Salpea P, Faucz FR, Szarek E, Nesterova M & Leikin S et al. 2015 Haploinsufficiency for either one of the type-II regulatory subunits of protein kinase A improves the bone phenotype of Prkar1a+/- mice. Human Molecular Genetics 24 60806092. (https://doi.org/10.1093/hmg/ddv320)

    • Search Google Scholar
    • Export Citation
  • Liu S, Shapiro JM, Saloustros E & Stratakis CA 2016 Bone abnormalities in mice with protein kinase A (PKA) defects reveal a role of cyclic AMP signaling in bone stromal cell-dependent tumor development. Hormone and Metabolic Research 48 714725. (https://doi.org/10.1055/s-0042-117111)

    • Search Google Scholar
    • Export Citation
  • Lodish MB, Yuan B, Levy I, Braunstein GD, Lyssikatos C, Salpea P, Szarek E, Karageorgiadis AS, Belyavskaya E & Raygada M et al. 2015 Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations. European Journal of Endocrinology 172 803811. (https://doi.org/10.1530/EJE-14-1154)

    • Search Google Scholar
    • Export Citation
  • London E, Noguchi A, Springer D, Faidas M, Gavrilova O, Eisenhofer G & Stratakis CA 2019 The catalytic subunit beta of PKA affects energy balance and catecholaminergic activity. Journal of the Endocrine Society 3 10621078. (https://doi.org/10.1210/js.2019-00029)

    • Search Google Scholar
    • Export Citation
  • Moen LV, Sener Z, Volchenkov R, Svarstad AC, Eriksen AM, Holen HL & Skalhegg BS 2017a Ablation of the Cbeta2 subunit of PKA in immune cells leads to increased susceptibility to systemic inflammation in mice. European Journal of Immunology 47 18801889. (https://doi.org/10.1002/eji.201646809)

    • Search Google Scholar
    • Export Citation
  • Moen LV, Ramberg H, Zhao S, Grytli HH, Sveen A, Berge V, Skotheim RI, Tasken KA & Skalhegg BS 2017b Observed correlation between the expression levels of catalytic subunit, Cbeta2, of cyclic adenosine monophosphate-dependent protein kinase and prostate cancer aggressiveness. Urologic Oncology 35 111.e1111 . e8. (https://doi.org/10.1016/j.urolonc.2016.10.002)

    • Search Google Scholar
    • Export Citation
  • Molyneux SD, Di Grappa MA, Beristain AG, McKee TD, Wai DH, Paderova J, Kashyap M, Hu P, Maiuri T & Narala SR et al. 2010 Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice. Journal of Clinical Investigation 120 33103325. (https://doi.org/10.1172/JCI42391)

    • Search Google Scholar
    • Export Citation
  • Orstavik S, Reinton N, Frengen E, Langeland BT, Jahnsen T & Skalhegg BS 2001 Identification of novel splice variants of the human catalytic subunit Cbeta of cAMP-dependent protein kinase. European Journal of Biochemistry 268 50665073. (https://doi.org/10.1046/j.0014-2956.2001.02429.x)

    • Search Google Scholar
    • Export Citation
  • Patronas Y, Horvath A, Greene E, Tsang K, Bimpaki E, Haran M, Nesterova M & Stratakis CA 2012 In vitro studies of novel PRKAR1A mutants that extend the predicted RIalpha protein sequence into the 3′-untranslated open reading frame: proteasomal degradation leads to RIalpha haploinsufficiency and Carney complex. Journal of Clinical Endocrinology and Metabolism 97 E496E5 02. (https://doi.org/10.1210/jc.2011-2220)

    • Search Google Scholar
    • Export Citation
  • Saloustros E, Liu S, Mertz EL, Bhattacharyya N, Starost MF, Salpea P, Nesterova M, Collins M, Leikin S & Stratakis CA 2017 Celecoxib treatment of fibrous dysplasia (FD) in a human FD cell line and FD-like lesions in mice with protein kinase A (PKA) defects. Molecular and Cellular Endocrinology 439 165174. (https://doi.org/10.1016/j.mce.2016.08.004)

    • Search Google Scholar
    • Export Citation
  • Salpea P, Horvath A, London E, Faucz FR, Vetro A, Levy I, Gourgari E, Dauber A, Holm IA & Morrison PJ et al. 2014 Deletions of the PRKAR1A locus at 17q24.2-q24.3 in Carney complex: genotype-phenotype correlations and implications for genetic testing. Journal of Clinical Endocrinology and Metabolism 99 E183E188. (https://doi.org/10.1210/jc.2013-3159)

    • Search Google Scholar
    • Export Citation
  • Saternus R, Pilz S, Graber S, Kleber M, Marz W, Vogt T & Reichrath J 2015 A closer look at evolution: variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration. Endocrinology 156 3947. (https://doi.org/10.1210/en.2014-1238)

    • Search Google Scholar
    • Export Citation
  • Singhi AD, Wood LD, Parks E, Torbenson MS, Felsenstein M, Hruban RH, Nikiforova MN, Wald AI, Kaya C & Nikiforov YE et al. 2020 Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 158 573 .e2582 . e2. (https://doi.org/10.1053/j.gastro.2019.10.028)

    • Search Google Scholar
    • Export Citation
  • Skalhegg BS, Huang Y, Su T, Idzerda RL, McKnight GS & Burton KA 2002 Mutation of the Calpha subunit of PKA leads to growth retardation and sperm dysfunction. Molecular Endocrinology 16 630639. (https://doi.org/10.1210/mend.16.3.0793)

    • Search Google Scholar
    • Export Citation
  • Soberg K, Jahnsen T, Rognes T, Skalhegg BS & Laerdahl JK 2013 Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits. PLoS ONE 8 e60935. (https://doi.org/10.1371/journal.pone.0060935)

    • Search Google Scholar
    • Export Citation
  • Stratakis CA 2014 E pluribus unum? The main protein kinase A catalytic subunit (PRKACA), a likely oncogene, and cortisol-producing tumors. Journal of Clinical Endocrinology and Metabolism 99 36293633. (https://doi.org/10.1210/jc.2014-3295)

    • Search Google Scholar
    • Export Citation
  • Stratakis CA 2018 Cyclic AMP-dependent protein kinase catalytic subunit A (PRKACA): the expected, the unexpected, and what might be next. Journal of Pathology 244 257259. (https://doi.org/10.1002/path.5014)

    • Search Google Scholar
    • Export Citation
  • Stratakis CA 2019 Called and uncalled for functions of the main catalytic subunit of protein kinase A: one enzyme, many faces. Endocrinology 160 16741676. (https://doi.org/10.1210/en.2019-00290)

    • Search Google Scholar
    • Export Citation
  • Tasken K & Aandahl EM 2004 Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiological Reviews 84 137167. (https://doi.org/10.1152/physrev.00021.2003)

    • Search Google Scholar
    • Export Citation
  • Taylor SS, Ilouz R, Zhang P & Kornev AP 2012 Assembly of allosteric macromolecular switches: lessons from PKA. Nature Reviews: Molecular Cell Biology 13 646658. (https://doi.org/10.1038/nrm3432)

    • Search Google Scholar
    • Export Citation
  • Tsang KM, Starost MF, Nesterova M, Boikos SA, Watkins T, Almeida MQ, Harran M, Li A, Collins MT & Cheadle C et al. 2010 Alternate protein kinase A activity identifies a unique population of stromal cells in adult bone. PNAS 107 86838688. (https://doi.org/10.1073/pnas.1003680107)

    • Search Google Scholar
    • Export Citation
  • Tseng IC, Huang WJ, Jhuang YL, Chang YY, Hsu HP & Jeng YM 2017 Microinsertions in PRKACA cause activation of the protein kinase A pathway in cardiac myxoma. Journal of Pathology 242 134139. (https://doi.org/10.1002/path.4899)

    • Search Google Scholar
    • Export Citation
  • Turan S & Bastepe M 2015 GNAS spectrum of disorders. Current Osteoporosis Reports 13 146158. (https://doi.org/10.1007/s11914-015-0268-x)

  • Uhler MD, Chrivia JC & McKnight GS 1986 Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. Journal of Biological Chemistry 261 1536015363.

    • Search Google Scholar
    • Export Citation
  • Wang Y, Wang B, Zhou H, Zhang X, Qian X & Cui J 2020 MicroRNA-384 inhibits the progression of papillary thyroid cancer by targeting PRKACB. BioMed Research International 2020 4983420. (https://doi.org/10.1155/2020/4983420)

    • Search Google Scholar
    • Export Citation
  • Wu KJ, Mattioli M, Morse 3rd HC & Dalla-Favera R 2002 c-MYC activates protein kinase A (PKA) by direct transcriptional activation of the PKA catalytic subunit beta (PKA-Cbeta) gene. Oncogene 21 78727882. (https://doi.org/10.1038/sj.onc.1205986)

    • Search Google Scholar
    • Export Citation
  • Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q & Li MQ et al. 2018 Role of circular RNA DLEU2 in human acute myeloid leukemia. Molecular and Cellular Biology 38 e00259-18. (https://doi.org/10.1128/MCB.00259-18)

    • Search Google Scholar
    • Export Citation
  • Yin Z, Pringle DR, Jones GN, Kelly KM & Kirschner LS 2011 Differential role of PKA catalytic subunits in mediating phenotypes caused by knockout of the Carney complex gene Prkar1a. Molecular Endocrinology 25 17861793. (https://doi.org/10.1210/me.2011-1008)

    • Search Google Scholar
    • Export Citation