Molecular iodine synergized and sensitized neuroblastoma cells to the antineoplastic effect of ATRA

in Endocrine-Related Cancer

Correspondence should be addressed to C Aceves: caracev@unam.mx
Restricted access

Neuroblastoma (NB) is the most common solid childhood tumor, and all-trans retinoic acid (ATRA) is used as a treatment to decrease minimal residual disease. Molecular iodine (I2) induces differentiation and/or apoptosis in several neoplastic cells through activation of PPARγ nuclear receptors. Here, we analyzed whether the coadministration of I2 and ATRA increases the efficacy of NB treatment. ATRA-sensitive (SH-SY5Y), partially-sensitive (SK-N-BE(2)), and non-sensitive (SK-N-AS) NB cells were used to analyze the effect of I2 and ATRA in vitro and in xenografts (Foxn1 nu/nu mice), exploring actions on cellular viability, differentiation, and molecular responses. In the SH-SY5Y cells, 200 μM I2 caused a 100-fold (0.01 µM) reduction in the antiproliferative dose of ATRA and promoted neurite extension and neural marker expression (tyrosine hydroxylase (TH) and tyrosine kinase receptor alpha (Trk-A)). In SK-N-AS, the I2 supplement sensitized these cells to 0.1 μM ATRA, increasing the ATRA-receptor (RARα) and PPARγ expression, and decreasing the Survivin expression. The I2 supplement increased the mitochondrial membrane potential in SK-N-AS suggesting the participation of mitochondrial-mediated mechanisms involved in the sensibilization to ATRA. In vivo, oral I2 supplementation (0.025%) synergized the antitumor effect of ATRA (1.5 mg/kg BW) and prevented side effects (body weight loss and diarrhea episodes). The immunohistochemical analysis showed that I2 supplementation decreased the intratumoral vasculature (CD34). We suggest that the I2 + ATRA combination should be studied in preclinical and clinical trials to evaluate its potential adjuvant effect in addition to conventional treatments.

Supplementary Materials

    • Table 1. Cell line authentication.
    • Table 2. Oligonucleotide sequence
    • Table 3. Table of the combination index (CI) of the multiple drug effect.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 861 861 56
Full Text Views 56 56 3
PDF Downloads 38 38 4
  • Aceves C, García-Solis P, Arroyo-Helguera O, Vega-Riveroll L, Delgado G & Anguiano B 2009 Antineoplastic effect of iodine in mammary cancer: participation of 6-iodolactone (6-IL) and peroxisome proliferator-activated receptors (PPAR). Molecular Cancer 8 33. (https://doi.org/10.1186/1476-4598-8-33)

    • Search Google Scholar
    • Export Citation
  • Aceves C, Anguiano B & Delgado G 2013 The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues. Thyroid 23 938946. (https://doi.org/10.1089/thy.2012.0579)

    • Search Google Scholar
    • Export Citation
  • Alfaro Y, Delgado G, Cárabez A, Anguiano B & Aceves C 2013 Iodine and doxorubicin, a good combination for mammary cancer treatment: antineoplastic adjuvancy, chemoresistance inhibition, and cardioprotection. Molecular Cancer 12 45. (https://doi.org/10.1186/1476-4598-12-45)

    • Search Google Scholar
    • Export Citation
  • Aranda N, Sosa S, Delgado G, Aceves C & Anguiano B 2013 Uptake and antitumoral effects of iodine and 6-iodolactone in differentiated and undifferentiated human prostate cancer cell lines. Prostate 73 3141. (https://doi.org/10.1002/pros.22536)

    • Search Google Scholar
    • Export Citation
  • Arroyo-Helguera O, Anguiano B, Delgado G & Aceves C 2006 Uptake and antiproliferative effect of molecular iodine in the MCF-7 breast cancer cell line. Endocrine-Related Cancer 13 11471158. (https://doi.org/10.1677/erc.1.01250)

    • Search Google Scholar
    • Export Citation
  • Arroyo-Helguera O, Rojas E, Delgado G & Aceves C 2008 Signaling pathways involved in the antiproliferative effect of molecular iodine in normal and tumoral breast cells: evidence that 6-iodolactone mediates apoptotic effects. Endocrine-Related Cancer 15 10031011. (https://doi.org/10.1677/ERC-08-0125)

    • Search Google Scholar
    • Export Citation
  • Ausserlechner MJ & Hagenbuchner J 2016 Mitochondrial survivin – an Achilles’ heel in cancer chemoresistance. Molecular and Cellular Oncology 3 e1076589. (https://doi.org/10.1080/23723556.2015.1076589)

    • Search Google Scholar
    • Export Citation
  • Benedetti E, Galzio R, D’Angelo B, Ceru MP & Cimini A 2010 PPARs in human neuroepithelial tumors: PPAR ligands as anticancer therapies for the most common human neuroepithelial tumors. PPAR Research 2010 427401. (https://doi.org/10.1155/2010/427401)

    • Search Google Scholar
    • Export Citation
  • Bigoni-Ordóñez GD, Ortiz-Sánchez E, Rosendo-Chalma P, Valencia-González HA, Aceves C & García-Carrancá A 2018 Molecular iodine inhibits the expression of stemness markers on cancer stem-like cells of established cell lines derived from cervical cancer. BMC Cancer 18 928. (https://doi.org/10.1186/s12885-018-4824-5)

    • Search Google Scholar
    • Export Citation
  • Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C, Benvenuti S, Ricordati C, Gelmini S & Ceni E et al. 2010 In vivo effects of rosiglitazone in a human neuroblastoma xenograft. British Journal of Cancer 102 6856 92. (https://doi.org/10.1038/sj.bjc.6605506)

    • Search Google Scholar
    • Export Citation
  • Chen X, Duan N, Zhang C & Zhang W 2016 Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. Journal of Cancer 7 314323. (https://doi.org/10.7150/jca.13332)

    • Search Google Scholar
    • Export Citation
  • Cheung BB 2015 Combination therapies improve the anticancer activities of retinoids in neuroblastoma. World Journal of Clinical Oncology 6 212215. (https://doi.org/10.5306/wjco.v6.i6.212)

    • Search Google Scholar
    • Export Citation
  • Chou TC 2010 Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research 70 44044 6. (https://doi.org/10.1158/0008-5472.CAN-09-1947)

    • Search Google Scholar
    • Export Citation
  • Elstner E, Williamson EA, Zang C, Fritz J, Heber D, Fenner M, Possinger K & Koeffler HP 2002 Novel therapeutic approach: ligands for PPARγ and retinoid receptors induce apoptosis in bcl-2-positive human breast cancer cells. Breast Cancer Research and Treatment 74 155165. (https://doi.org/10.1023/a:1016114026769)

    • Search Google Scholar
    • Export Citation
  • Hagenbuchner J, Kiechl-Kohlendorfer U, Obexer P & Ausserlechner MJ 2016 BIRC5/Survivin as target for glycolisis inhibition in high stage neuroblastoma. Oncogene 35 20522061. (https://doi.org/10.1038/onc.2015.264)

    • Search Google Scholar
    • Export Citation
  • He BC, Chen L, Zuo GW, Zhang W, Bi Y, Huang J, Wang Y, Jiang W, Luo Q & Shi Q et al. 2010 Synergistic antitumor effect of the activated PPARgamma and retinoid receptors on human osteosarcoma. Clinical Cancer Research 16 22352245. (https://doi.org/10.1158/1078-0432.CCR-09-2499)

    • Search Google Scholar
    • Export Citation
  • Islam A, Kageyama H, Takada N, Kawamato T, Takayasu H, Isogai E, Ohira M, Hashizume K, Kobayashi H & Kaneko Y et al. 2000 High expression of survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19 617623. (https://doi.org/10.1038/sj.onc.1203358)

    • Search Google Scholar
    • Export Citation
  • Kunnimalaiyaan S, Schwartz VK, Jackson IA, Clark Gamblin T & Kunnimalaiyaan M 2018 Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro. BMC Cancer 18 560. (https://doi.org/10.1186/s12885-018-4474-7)

    • Search Google Scholar
    • Export Citation
  • Lan L, Basourakos S, Cui D, Zuo X, Deng W, Huo L, Chen H, Zhang G, Deng L & Shi B et al. 2017 ATRA increases iodine uptake and inhibits the proliferation and invasiveness of human anaplastic thyroid carcinoma SW1736 cells: involvement of βcatenin phosphorylation inhibition. Oncology Letters 14 77337738. (https://doi.org/10.3892/ol.2017.7225)

    • Search Google Scholar
    • Export Citation
  • Lee Y-R, Yu H-N, Noh E-M, Kim J-S, Song E-K, Han M-K, Kim B-S, Lee S-H & Park J 2007 Peroxisome proliferator-activated receptor γ and retinoic acid receptor synergistically up-regulate the tumor suppressor PTEN in human promyeloid leukemia cells. International Journal of Hematology 85 231237. (https://doi.org/10.1532/IJH97.A30615)

    • Search Google Scholar
    • Export Citation
  • Liu X & Fan D 2015 The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links. Current Pharmaceutical Design 21 1279–1291. (https://doi.org/10.2174/1381612821666141211115611)

    • Search Google Scholar
    • Export Citation
  • MacDonald JA, Kura N, Sussman C & Woods DC 2018 Mitochondrial membrane depolarization enhances TRAIL-induced cell death in adult human granulosa tumor cells, KGN, through inhibition of BIRC5. Journal of Ovarian Research 11 89. (https://doi.org/10.1186/s13048-018-0463-3)

    • Search Google Scholar
    • Export Citation
  • Maris JM 2010 Recent advances in neuroblastoma. New England Journal of Medicine 362 22022211. (https://doi.org/10.1056/NEJMra0804577)

  • Martínez-García D, Manero-Ruperez N, Quesada R, Korrodi-Gregorio L & Soto-Cerrato V 2019 Therapeutic strategies involving survivin inhibition in cancer. Medicinal Research Reviews 39 887909. (https://doi.org/10.1002/med.21547)

    • Search Google Scholar
    • Export Citation
  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT & Brodeur GM et al. 1999 Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. New England Journal of Medicine 341 116511 73. (https://doi.org/10.1056/NEJM199910143411601)

    • Search Google Scholar
    • Export Citation
  • Mendieta I, Nuñez-Anita RE, Nava-Villalba M, Zambrano-Estrada X, Delgado-González E, Anguiano B & Aceves C 2019 Molecular iodine exerts antineoplastic effects by diminishing proliferation and invasive potential and activating the immune response in mammary cancer xenografts. BMC Cancer 19 261. (https://doi.org/10.1186/s12885-019-5437-3)

    • Search Google Scholar
    • Export Citation
  • Monami M, Dicembrini I & Mannucci E 2014 Thiazolidinediones and cancer: results of a meta-analysis of randomized clinical trials. Acta Diabetologica 51 91101. (https://doi.org/10.1007/s00592-013-0504-8)

    • Search Google Scholar
    • Export Citation
  • Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C, Cortes-Canteli M, Santos A, Garcia-Verdugo JM & Perez-Castillo A 2011 Peroxisome proliferator-activated receptor gamma ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia 59 293307. (https://doi.org/10.1002/glia.21101)

    • Search Google Scholar
    • Export Citation
  • Nava-Villalba M, Nuñez-Anita RE, Bontempo A & Aceves C 2015 Activation of peroxisome proliferator-activated receptor gamma is crucial for antitumoral effects of 6-iodolactone. Molecular Cancer 14 168. (https://doi.org/10.1186/s12943-015-0436-8)

    • Search Google Scholar
    • Export Citation
  • Nuñez-Anita RE, Arroyo-Helguera O, Cajero-Juárez M, López-Bojorquez L & Aceves C 2009 A complex between 6-iodolactone and the peroxisome proliferator-activated receptor type gamma may mediate the antineoplasic effect of iodine in mammary cancer. Prostaglandins and Other Lipid Mediators 89 3442. (https://doi.org/10.1016/j.prostaglandins.2009.04.001)

    • Search Google Scholar
    • Export Citation
  • Park JR, Eggert A & Caron H 2008 Neuroblastoma: biology, prognosis, and treatment. Pediatric Clinics of North America 55 97120, x. (https://doi.org/10.1016/j.pcl.2007.10.014)

    • Search Google Scholar
    • Export Citation
  • Peters JM, Shah YM & Gonzalez FJ 2012 The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nature Reviews: Cancer 12 181195. (https://doi.org/10.1038/nrc3214)

    • Search Google Scholar
    • Export Citation
  • Ratner N, Brodeur GM, Dale RC & Schor NF 2016 The ‘neuro’ of neuroblastoma: neuroblastoma as a neurodevelopmental disorder. Annals of Neurology 80 1323. (https://doi.org/10.1002/ana.24659)

    • Search Google Scholar
    • Export Citation
  • Rösner H, Torremante P, Möller W & Gärtner R 2010 Antiproliferative/cytotoxic activity of molecular iodine and iodolactones in various human carcinoma cell lines. No interfering with EGF-signaling, but evidence for apoptosis. Experimental and Clinical Endocrinology and Diabetes 118 410419. (https://doi.org/10.1055/s-0029-1225615)

    • Search Google Scholar
    • Export Citation
  • Shrivastava A, Tiwari M, Sinha RA, Kumar A, Balapure AK, Bajpai VK, Sharma R, Mitra K, Tandon A & Godbole MM 2006 Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving the mitochondria-mediated pathway. Journal of Biological Chemistry 281 1976219771. (https://doi.org/10.1074/jbc.M600746200)

    • Search Google Scholar
    • Export Citation
  • Singh P, Godbole M, Rao G, Annarao S, Mitra K, Roy R, Ingle A, Agarwal G & Tiwari S 2011 Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors. Biochemical and Biophysical Research Communications 415 181186. (https://doi.org/10.1016/j.bbrc.2011.10.054)

    • Search Google Scholar
    • Export Citation
  • Szemes M, Greenhough A, Melegh Z, Malik S, Yuksel A, Catchpoole D, Gallacher K, Kollareddy M, Park JH & Malik K 2018 Wnt signalling drives context-dependent differentiation or proliferation in neuroblastoma. Neoplasia 20 335350. (https://doi.org/10.1016/j.neo.2018.01.009)

    • Search Google Scholar
    • Export Citation
  • Upadhyay G, Singh R, Sharma R, Balapure AK & Godbole MM 2002 Differential action of iodine on mitochondria from human tumoral- and extra-tumoral tissue in inducing the release of apoptogenic proteins. Mitochondrion 2 199210. (https://doi.org/10.1016/s1567-7249(0200068-5)

    • Search Google Scholar
    • Export Citation
  • Wettmarshausen J & Perocchi F 2017 Isolation of functional mitochondria from cultured cells and mouse tissues. In Methods in Molecular Biology. Ed Walker JMHumana Press. (https://doi.org/10.1007/978-1-4939-6824-4_2)

    • Search Google Scholar
    • Export Citation
  • Willhauck MJ, OKane DJ, Wunderlich N, Göke B & Spitzweg C 2011 Stimulation of retinoic acid-induced functional sodium iodide symporter (NIS) expression and cytotoxicity of 131 I by carbamazepine in breast cancer cells. Breast Cancer Research and Treatment 125 377386. (https://doi.org/10.1007/s10549-010-0835-x)

    • Search Google Scholar
    • Export Citation
  • Winje IM, Sheng X, Hansson KA, Solbra A, Tennoe S, Saatcioglu F, Bruusgaard JC & Gundersen K 2019 Cachexia does not induce loss of myonuclei or muscle fibres during xenografted prostate cancer in mice. Acta Physiologica 225 e13204. (https://doi.org/10.1111/apha.13204)

    • Search Google Scholar
    • Export Citation