Mebendazole inhibits tumor growth and prevents lung metastasis in models of advanced thyroid cancer

in Endocrine-Related Cancer
Authors:
Tara Williamson Departments of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, Maryland, USA

Search for other papers by Tara Williamson in
Current site
Google Scholar
PubMed
Close
,
Thais Biude Mendes Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Universidade Federal de São Paulo, São Paulo, Brazil

Search for other papers by Thais Biude Mendes in
Current site
Google Scholar
PubMed
Close
,
Natalie Joe Departments of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, Maryland, USA

Search for other papers by Natalie Joe in
Current site
Google Scholar
PubMed
Close
,
Janete M Cerutti Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Universidade Federal de São Paulo, São Paulo, Brazil

Search for other papers by Janete M Cerutti in
Current site
Google Scholar
PubMed
Close
, and
Gregory J Riggins Departments of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, Maryland, USA

Search for other papers by Gregory J Riggins in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to J M Cerutti or G J Riggins: j.cerutti@unifesp.br or griggin1@jhmi.edu

*(T Williamson and T B Mendes contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

The most common thyroid malignancy is papillary thyroid cancer. While a majority respond to therapy and have a favorable prognosis, some papillary thyroid cancers persist. This subset may dedifferentiate to anaplastic thyroid cancer, an aggressive, highly invasive and rapidly fatal cancer. Thyroid cancer patients at risk for disease progression and metastasis need earlier, safer and more effective therapies. The purpose of this translational study was to determine if mebendazole could be repurposed to effectively treat thyroid cancer, in particular before metastasis. In vitro, mebendazole potently inhibited the growth of a panel of human papillary and anaplastic thyroid cancer cells. In papillary (B-CPAP) and anaplastic (8505c) cell lines, mebendazole increased the percentage of cells in G2/M cell cycle arrest and induced late stage apoptosis by activation of the caspase-3 pathway. In aggressive 8505c cells, mebendazole significantly repressed migratory and invasive potential in a wound healing and transwell invasion assay and inhibited expression of phosphorylated Akt and Stat3 and reduced Gli1. In vivo, mebendazole treatment resulted in significant orthotopic thyroid tumor regression (B-CPAP) and growth arrest (8505c), with treated tumors displaying reduced expression of the proliferation maker KI67 and less vascular epithelium as indicated by CD31+ immunohistochemistry. Most importantly, daily oral mebendazole prevented established thyroid tumors from metastasizing to the lung. Given the low toxicity and published anticancer mechanisms of mebendazole, this novel preclinical study of mebendazole in thyroid cancer has promising therapeutic implications for patients with treatment refractory papillary or anaplastic thyroid cancer.

 

  • Collapse
  • Expand
  • Alonso-Gordoa T, Diez JJ, Duran M & Grande E 2015 Advances in thyroid cancer treatment: latest evidence and clinical potential. Therapeutic Advances in Medical Oncology 2238. (https://doi.org/10.1177/1758834014551936)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antonello ZA & Nucera C 2014 Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAF(V600E) or wild-type BRAF. Oncogene 53975404. (https://doi.org/10.1038/onc.2013.544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Attili I, Karachaliou N, Bonanno L, Berenguer J, Bracht J, Codony-Servat J, Codony-Servat C, Ito M & Rosell R 2018 STAT3 as a potential immunotherapy biomarker in oncogene-addicted non-small cell lung cancer. Therapeutic Advances in Medical Oncology 1758835918763744. (https://doi.org/10.1177/1758835918763744)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bai RY, Staedtke V, Aprhys CM, Gallia GL & Riggins GJ 2011 Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-Oncology 974982. (https://doi.org/10.1093/neuonc/nor077)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bai RY, Staedtke V, Rudin CM, Bunz F & Riggins GJ 2015 Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro-Oncology 545554. (https://doi.org/10.1093/neuonc/nou234)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bates MF, Lamas MR, Randle RW, Long KL, Pitt SC, Schneider DF & Sippel RS 2018 Back so soon? Is early recurrence of papillary thyroid cancer really just persistent disease? Surgery 118123. (https://doi.org/10.1016/j.surg.2017.05.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cancer Genome Atlas Research Network 2014 Integrated genomic characterization of papillary thyroid carcinoma. Cell 676690. (https://doi.org/10.1016/j.cell.2014.09.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chan CM, Jing X, Pike LA, Zhou Q, Lim DJ, Sams SB, Lund GS, Sharma V, Haugen BR & Schweppe RE 2012 Targeted inhibition of Src kinase with dasatinib blocks thyroid cancer growth and metastasis. Clinical Cancer Research 35803591. (https://doi.org/10.1158/1078-0432.CCR-11-3359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, Kane MA, Sherman E, Kim S, Bycott P, et al. 2008 Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. Journal of Clinical Oncology 47084713. (https://doi.org/10.1200/JCO.2007.15.9566)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Couto JP, Daly L, Almeida A, Knauf JA, Fagin JA, Sobrinho-Simoes M, Lima J, Maximo V, Soares P, Lyden D, et al. 2012 STAT3 negatively regulates thyroid tumorigenesis. PNAS E2361E2370. (https://doi.org/10.1073/pnas.1201232109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Czarniecka A, Oczko-Wojciechowska M & Barczynski M 2016 BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence. Gland Surgery 495505. (https://doi.org/10.21037/gs.2016.09.09)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Crevoisier R, Baudin E, Bachelot A, Leboulleux S, Travagli JP, Caillou B & Schlumberger M 2004 Combined treatment of anaplastic thyroid carcinoma with surgery, chemotherapy, and hyperfractionated accelerated external radiotherapy. International Journal of Radiation Oncology, Biology, Physics 11371143. (https://doi.org/10.1016/j.ijrobp.2004.05.032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobrosotskaya IY, Hammer GD, Schteingart DE, Maturen KE & Worden FP 2011 Mebendazole monotherapy and long-term disease control in metastatic adrenocortical carcinoma. Endocrine Practice e59e62. (https://doi.org/10.4158/EP10390.CR)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doudican N, Rodriguez A, Osman I & Orlow SJ 2008 Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Molecular Cancer Research 13081315. (https://doi.org/10.1158/1541-7786.MCR-07-2159)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doudican NA, Byron SA, Pollock PM & Orlow SJ 2013 XIAP downregulation accompanies mebendazole growth inhibition in melanoma xenografts. Anti-Cancer Drugs 181188. (https://doi.org/10.1097/CAD.0b013e32835a43f1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, Romei C, Miccoli P, Pinchera A & Basolo F 2008 BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. Journal of Clinical Endocrinology and Metabolism 39433949. (https://doi.org/10.1210/jc.2008-0607)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garcia-Rendueles ME, Ricarte-Filho JC, Untch BR, Landa I, Knauf JA, Voza F, Smith VE, Ganly I, Taylor BS, Persaud Y, et al. 2015 NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition. Cancer Discovery 11781193. (https://doi.org/10.1158/2159-8290.CD-15-0330)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerra A, Di Crescenzo V, Garzi A, Cinelli M, Carlomagno C, Tonacchera M, Zeppa P & Vitale M 2013 Genetic mutations in the treatment of anaplastic thyroid cancer: a systematic review. BMC Surgery (Supplement 2) S44. (https://doi.org/10.1186/1471-2482-13-S2-S44)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gunda V, Bucur O, Varnau J, Vanden Borre P, Bernasconi MJ, Khosravi-Far R & Parangi S 2014 Blocks to thyroid cancer cell apoptosis can be overcome by inhibition of the MAPK and PI3K/AKT pathways. Cell Death and Disease e1104. (https://doi.org/10.1038/cddis.2014.78)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haddad RI, Lydiatt WM, Ball DW, Busaidy NL, Byrd D, Callender G, Dickson P, Duh QY, Ehya H, Haymart M, et al. 2015 Anaplastic thyroid carcinoma, Version 2.2015. Journal of the National Comprehensive Cancer Network 11401150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hsu KT, Yu XM, Audhya AW, Jaume JC, Lloyd RV, Miyamoto S, Prolla TA & Chen H 2014 Novel approaches in anaplastic thyroid cancer therapy. Oncologist 11481155. (https://doi.org/10.1634/theoncologist.2014-0182)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jo YS, Li S, Song JH, Kwon KH, Lee JC, Rha SY, Lee HJ, Sul JY, Kweon GR, Ro HK, et al. 2006 Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism 36673670. (https://doi.org/10.1210/jc.2005-2836)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keefe SM, Cohen MA & Brose MS 2010 Targeting vascular endothelial growth factor receptor in thyroid cancer: the intracellular and extracellular implications. Clinical Cancer Research 778783. (https://doi.org/10.1158/1078-0432.CCR-08-2743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keutgen XM, Sadowski SM & Kebebew E 2015 Management of anaplastic thyroid cancer. Gland Surgery 4451. (https://doi.org/10.3978/j.issn.2227-684X.2014.12.02)

  • Kim S, Park YW, Schiff BA, Doan DD, Yazici Y, Jasser SA, Younes M, Mandal M, Bekele BN & Myers JN 2005 An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice. Clinical Cancer Research 17131721. (https://doi.org/10.1158/1078-0432.CCR-04-1908)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurebayashi J, Otsuki T, Tanaka K, Yamamoto Y, Moriya T & Sonoo H 2003 Medroxyprogesterone acetate decreases secretion of interleukin-6 and parathyroid hormone-related protein in a new anaplastic thyroid cancer cell line, KTC-2. Thyroid 13 249258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, Ghossein RA & Fagin JA 2013 Frequent somatic tert promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. Journal of Clinical Endocrinology and Metabolism E1562E1566. (https://doi.org/10.1210/jc.2013-2383)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, et al. 2016 Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation 10521066. (https://doi.org/10.1172/JCI85271)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Larsen AR, Bai RY, Chung JH, Borodovsky A, Rudin CM, Riggins GJ & Bunz F 2015 Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Molecular Cancer Therapeutics 313. (https://doi.org/10.1158/1535-7163.MCT-14-0755-T)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lim H, Devesa SS, Sosa JA, Check D & Kitahara CM 2017 Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 13381348. (https://doi.org/10.1001/jama.2017.2719)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu R & Xing M 2016 Tert promoter mutations in thyroid cancer. Endocrine-Related Cancer R143R155. (https://doi.org/10.1530/ERC-15-0533)

  • Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, Sun H, El-Naggar AK & Xing M 2013 Highly prevalent tert promoter mutations in aggressive thyroid cancers. Endocrine-Related Cancer 603610. (https://doi.org/10.1530/ERC-13-0210)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Melck AL, Yip L & Carty SE 2010 The utility of BRAF testing in the management of papillary thyroid cancer. Oncologist 12851293. (https://doi.org/10.1634/theoncologist.2010-0156)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morrison JA, Pike LA, Lund G, Zhou Q, Kessler BE, Bauerle KT, Sams SB, Haugen BR & Schweppe RE 2015 Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models. Hormones and Cancer 8799. (https://doi.org/10.1007/s12672-015-0219-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mudduluru G, Walther W, Kobelt D, Dahlmann M, Treese C, Assaraf YG & Stein U 2016 Repositioning of drugs for intervention in tumor progression and metastasis: old drugs for new targets. Drug Resistance Updates 1027. (https://doi.org/10.1016/j.drup.2016.03.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay T, Sasaki J, Ramesh R & Roth JA 2002 Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clinical Cancer Research 29632969.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagaiah G, Hossain A, Mooney CJ, Parmentier J & Remick SC 2011 Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. Journal of Oncology 542358. (https://doi.org/10.1155/2011/542358)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nucera C, Nehs MA, Mekel M, Zhang X, Hodin R, Lawler J, Nose V & Parangi S 2009 A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 10771084. (https://doi.org/10.1089/thy.2009.0055)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nygren P & Larsson R 2014 Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncologica 427428. (https://doi.org/10.3109/0284186X.2013.844359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nygren P, Fryknas M, Agerup B & Larsson R 2013 Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. Journal of Cancer Research and Clinical Oncology 21332140. (https://doi.org/10.1007/s00432-013-1539-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oh E, Kim YJ, An H, Sung D, Cho TM, Farrand L, Jang S, Seo JH & Kim JY 2018 Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. International Journal of Cancer 19781993. (https://doi.org/10.1002/ijc.31585)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Neill JP & Shaha AR 2013 Anaplastic thyroid cancer. Oral Oncology 702706. (https://doi.org/10.1016/j.oraloncology.2013.03.440)

  • Pantziarka P, Bouche G, Meheus L, Sukhatme V & Sukhatme VP 2014 Repurposing drugs in oncology (ReDO)-mebendazole as an anti-cancer agent. Ecancermedicalscience 443. (https://doi.org/10.3332/ecancer.2014.443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perri F, Lorenzo GD, Scarpati GD & Buonerba C 2011 Anaplastic thyroid carcinoma: a comprehensive review of current and future therapeutic options. World Journal of Clinical Oncology 150157. (https://doi.org/10.5306/wjco.v2.i3.150)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pinto LC, Soares BM, Pinheiro Jde J, Riggins GJ, Assumpcao PP, Burbano RM & Montenegro RC 2015 The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicology In Vitro 20382044. (https://doi.org/10.1016/j.tiv.2015.08.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ragazzi M, Ciarrocchi A, Sancisi V, Gandolfi G, Bisagni A & Piana S 2014 Update on anaplastic thyroid carcinoma: morphological, molecular, and genetic features of the most aggressive thyroid cancer. International Journal of Endocrinology 790834. (https://doi.org/10.1155/2014/790834)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saini S, Tulla K, Maker AV, Burman KD & Prabhakar BS 2018 Therapeutic advances in anaplastic thyroid cancer: a current perspective. Molecular Cancer 154. (https://doi.org/10.1186/s12943-018-0903-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saiselet M, Floor S, Tarabichi M, Dom G, Hebrant A, van Staveren WC & Maenhaut C 2012 Thyroid cancer cell lines: an overview. Frontiers in Endocrinology 133. (https://doi.org/10.3389/fendo.2012.00133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki J, Ramesh R, Chada S, Gomyo Y, Roth JA & Mukhopadhyay T 2002 The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Molecular Cancer Therapeutics 12011209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schweppe RE 2012 Thyroid cancer cell lines: critical models to study thyroid cancer biology and new therapeutic targets. Frontiers in Endocrinology 81. (https://doi.org/10.3389/fendo.2012.00081)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sherman SI 2011 Targeted therapies for thyroid tumors. Modern Pathology (Supplement 2) S44S52. (https://doi.org/10.1038/modpathol.2010.165)

  • Sherman SI, Wirth LJ, Droz JP, Hofmann M, Bastholt L, Martins RG, Licitra L, Eschenberg MJ, Sun YN, Juan T, et al. 2008 Motesanib diphosphate in progressive differentiated thyroid cancer. New England Journal of Medicine 3142. (https://doi.org/10.1056/NEJMoa075853)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shiraiwa K, Matsuse M, Nakazawa Y, Ogi T, Suzuki K, Saenko V, Xu S, Umezawa K, Yamashita S, Tsukamoto K, et al. 2019 JAK/STAT3 and NF-kappaB signaling pathways regulate cancer stem-cell properties in anaplastic thyroid cancer cells. Thyroid 674682. (https://doi.org/10.1089/thy.2018.0212)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simbulan-Rosenthal CM, Dakshanamurthy S, Gaur A, Chen YS, Fang HB, Abdussamad M, Zhou H, Zapas J, Calvert V, Petricoin EF, et al. 2017 The repurposed anthelmintic mebendazole in combination with trametinib suppresses refractory NRASQ61K melanoma. Oncotarget 1257612595. (https://doi.org/10.18632/oncotarget.14990)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skibinski CG, Williamson T & Riggins GJ 2018 Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma. Journal of Neuro-Oncology 529538. (https://doi.org/10.1007/s11060-018-03009-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song YS & Park YJ 2019 Genomic characterization of differentiated thyroid carcinoma. Endocrinology and Metabolism 110. (https://doi.org/10.3803/EnM.2019.34.1.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tan Z, Chen L & Zhang S 2016 Comprehensive modeling and discovery of mebendazole as a novel TRAF2- and NCK-interacting kinase inhibitor. Scientific Reports 33534. (https://doi.org/10.1038/srep33534)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tseng LM, Huang PI, Chen YR, Chen YC, Chou YC, Chen YW, Chang YL, Hsu HS, Lan YT, Chen KH, et al. 2012 Targeting signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+ cells. Journal of Pharmacology and Experimental Therapeutics 410423. (https://doi.org/10.1124/jpet.111.188730)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vanden Borre P, Gunda V, McFadden DG, Sadow PM, Varmeh S, Bernasconi M & Parangi S 2014 Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget 39964010. (https://doi.org/10.18632/oncotarget.2130)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vicari L, Colarossi C, Giuffrida D, De Maria R & Memeo L 2016 Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncology Letters 22542260. (https://doi.org/10.3892/ol.2016.4936)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viglietto G, Maglione D, Rambaldi M, Cerutti J, Romano A, Trapasso F, Fedele M, Ippolito P, Chiappetta G & Botti G 1995 Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 15691579.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viola D, Valerio L, Molinaro E, Agate L, Bottici V, Biagini A, Lorusso L, Cappagli V, Pieruzzi L, Giani C, et al. 2016 Treatment of advanced thyroid cancer with targeted therapies: ten years of experience. Endocrine-Related Cancer R185R205. (https://doi.org/10.1530/ERC-15-0555)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williamson AJ, Doscas ME, Ye J, Heiden KB, Xing M, Li Y, Prinz RA & Xu X 2016a The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met. Oncotarget 1047210485. (https://doi.org/10.18632/oncotarget.7228)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williamson T, Bai RY, Staedtke V, Huso D & Riggins GJ 2016b Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 6857168584. (https://doi.org/10.18632/oncotarget.11851)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xing M 2013 Molecular pathogenesis and mechanisms of thyroid cancer. Nature Reviews: Cancer 184199. (https://doi.org/10.1038/nrc3431)

  • Yan LI, Li LI, Li Q, Di W, Shen W, Zhang L & Guo H 2015 Expression of signal transducer and activator of transcription 3 and its phosphorylated form is significantly upregulated in patients with papillary thyroid cancer. Experimental and Therapeutic Medicine 21952201. (https://doi.org/10.3892/etm.2015.2409)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, Kim YA, Kim SJ, Cho SW, Won JK, et al. 2019 Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nature Communications 2764. (https://doi.org/10.1038/s41467-019-10680-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yun JY, Kim YA, Choe JY, Min H, Lee KS, Jung Y, Oh S & Kim JE 2014 Expression of cancer stem cell markers is more frequent in anaplastic thyroid carcinoma compared to papillary thyroid carcinoma and is related to adverse clinical outcome. Journal of Clinical Pathology 125133. (https://doi.org/10.1136/jclinpath-2013-201711)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Gill A, Atmore B, Johns A, Delbridge L, Lai R & McMullen T 2011 Upregulation of the signal transducers and activators of transcription 3 (STAT3) pathway in lymphatic metastases of papillary thyroid cancer. International Journal of Clinical and Experimental Pathology 356362.

    • PubMed
    • Search Google Scholar
    • Export Citation