Cyclin E1 and cyclin E2 in ER+ breast cancer: prospects as biomarkers and therapeutic targets

in Endocrine-Related Cancer

Correspondence should be addressed to C E Caldon: l.caldon@garvan.org.au

This article was commissioned following sponsorship of the 7th PacRim Breast and Prostate Meeting by Endocrine-Related Cancer

Restricted access

Cyclin E1 is one the most promising biomarkers in estrogen receptor positive (ER+) breast cancer for response to the new standard of care drug class, CDK4/6 inhibitors. Because of its strong predictive value, cyclin E1 expression may be used in the future to triage patients into potential responders and non-responders. Importantly, cyclin E1 is highly related to cyclin E2, and both cyclin E1 and cyclin E2 are estrogen target genes that can facilitate anti-estrogen resistance and can be highly expressed in breast cancer. However cyclin E1 and E2 are often expressed in different subsets of patients. This raises questions about whether the expression of cyclin E1 and cyclin E2 have different biological drivers, if high expressing subsets represent different clinical subtypes, and how to effectively develop a biomarker for E-cyclin expression. Finally, several pan-CDK inhibitors that target cyclin E-CDK2 activity have reached Phase II clinical trials. In this review, we outline the data identifying that different cohorts of patients have high expression of cyclins E1 and E2 in ER+ cancer and address the implications for biomarker and therapeutic development.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 579 579 524
Full Text Views 32 32 31
PDF Downloads 12 12 11
  • AdesFZardavasDBozovic-SpasojevicIPuglianoLFumagalliDDe AzambujaEVialeGSotiriouCPiccartM 2014 Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. Journal of Clinical Oncology 32 27942803. (https://doi.org/10.1200/JCO.2013.54.1870)

    • Search Google Scholar
    • Export Citation
  • AgarwalRGonzalez-AnguloAMMyhreSCareyMLeeJSOvergaardJAlsnerJStemke-HaleKLluchANeveRM 2009 Integrative analysis of cyclin protein levels identifies cyclin B1 as a classifier and predictor of outcomes in breast cancer. Clinical Cancer Research 15 36543662. (https://doi.org/10.1158/1078-0432.CCR-08-3293)

    • Search Google Scholar
    • Export Citation
  • AkliSZhengPJMultaniASWingateHFPathakSZhangNTuckerSLChangSKeyomarsiK 2004 Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Research 64 31983208. (https://doi.org/10.1158/0008-5472.can-03-3672)

    • Search Google Scholar
    • Export Citation
  • AkliSBuiTWingateHBiernackaAMoulderSTuckerSLHuntKKKeyomarsiK 2010 Low-molecular-weight cyclin E can bypass letrozole-induced G1 arrest in human breast cancer cells and tumors. Clinical Cancer Research 16 11791190. (https://doi.org/10.1158/1078-0432.CCR-09-1787)

    • Search Google Scholar
    • Export Citation
  • Al-DhaheriMWuJSklirisGPLiJHigashimatoKWangYWhiteKPLambertPZhuYMurphyL 2011 CARM1 is an important determinant of ERα-dependent breast cancer cell differentiation and proliferation in breast cancer cells. Cancer Research 71 21182128. (https://doi.org/10.1158/0008-5472.CAN-10-2426)

    • Search Google Scholar
    • Export Citation
  • AndreFStemmerSMCamponeMPetrakovaKPaluch-ShimonSYapY-SMarschnerNChanAVillanuevaCHartLL 2017 Abstract CT045: Ribociclib + letrozole for first-line treatment of hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC): efficacy by baseline tumor markers. Cancer Research 77 (13 Suppl) CT045. (https://doi.org/10.1158/1538-7445.AM2017-CT045)

    • Search Google Scholar
    • Export Citation
  • ArnedosMBayarMACheaibBScottVBouakkaIValentAAdamJLeroux-KozalVMartyVRapinatA 2018 Modulation of Rb phosphorylation and antiproliferative response to palbociclib: the preoperative-palbociclib (POP) randomized clinical trial. Annals of Oncology 29 17551762. (https://doi.org/10.1093/annonc/mdy202)

    • Search Google Scholar
    • Export Citation
  • BangenJMHammerichLSonntagRBauesMHaasULambertzDLongerichTLammersTTackeFTrautweinC 2017 Targeting CCl4-induced liver fibrosis by RNA interference–mediated inhibition of cyclin E1 in mice. Hepatology 66 12421257. (https://doi.org/10.1002/hep.29275)

    • Search Google Scholar
    • Export Citation
  • BardiaAModiSCortesJCamponeMDirixLMaBBeckJTChavesJWeiseAVukyJ 2018 Abstract CT069: Baseline gene expression patterns of CDK4/6 inhibitor-naïve or -refractory HR+ HER2- advanced breast cancer in the phase Ib study of ribociclib plus everolimus plus exemestane. Cancer Research 78 (13 Suppl) CT069. (https://doi.org/10.1158/1538-7445.AM2018-CT069)

    • Search Google Scholar
    • Export Citation
  • BerglundPStighallMJirströmKRydénLFernöMNordenskjöldBLandbergG 2008 Cyclin E confers a prognostic value in premenopausal breast cancer patients with tumours exhibiting an infiltrative growth pattern. Journal of Clinical Pathology 61 184191. (https://doi.org/10.1136/jcp.2007.047688)

    • Search Google Scholar
    • Export Citation
  • BortnerDMRosenbergMP 1997 Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Molecular and Cellular Biology 17 453459. (https://doi.org/10.1128/mcb.17.1.453)

    • Search Google Scholar
    • Export Citation
  • BoscoEEWangYXuHZilfouJTKnudsenKEAronowBJLoweSWKnudsenES 2007 The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. Journal of Clinical Investigation 117 218228. (https://doi.org/10.1172/JCI28803)

    • Search Google Scholar
    • Export Citation
  • CaldonCEMusgroveEA 2010 Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Division 5 2. (https://doi.org/10.1186/1747-1028-5-2)

    • Search Google Scholar
    • Export Citation
  • CaldonCESergioCMSchutteJBoersmaMNSutherlandRLCarrollJSMusgroveEA 2009 Estrogen regulation of cyclin E2 requires cyclin D1, but not c-Myc. Molecular and Cellular Biology 29 46234639. (https://doi.org/10.1128/MCB.00269-09)

    • Search Google Scholar
    • Export Citation
  • CaldonCESergioCMKangJMuthukaruppanABoersmaMNStoneABarracloughJLeeCSBlackMAMillerLD 2012 Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells. Molecular Cancer Therapeutics 11 14881499. (https://doi.org/10.1158/1535-7163.MCT-11-0963)

    • Search Google Scholar
    • Export Citation
  • CaldonCESergioCMSutherlandRLMusgroveEA 2013a Differences in degradation lead to asynchronous expression of cyclin E1 and cyclin E2 in cancer cells. Cell Cycle 12 596605. (https://doi.org/10.4161/cc.23409)

    • Search Google Scholar
    • Export Citation
  • CaldonCESergioCMBurgessADeansAJSutherlandRLMusgroveEA 2013b Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle 12 606617. (https://doi.org/10.4161/cc.23512)

    • Search Google Scholar
    • Export Citation
  • CampanerSDoniMHydbringPVerrecchiaABianchiLSardellaDSchlekerTPernaDTronnersjoSMurgaM 2010 Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nature Cell Biology 12 54–59. (https://doi.org/10.1038/ncb2004)

    • Search Google Scholar
    • Export Citation
  • CampisiJ 2013 Aging, cellular senescence, and cancer. Annual Review of Physiology 75 685705. (https://doi.org/10.1146/annurev-physiol-030212-183653)

    • Search Google Scholar
    • Export Citation
  • CariouSDonovanJCHFlanaganWMMilicABhattacharyaNSlingerlandJM 2000 Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. PNAS 97 90429046. (https://doi.org/10.1073/pnas.160016897)

    • Search Google Scholar
    • Export Citation
  • CarusoJADuongMTCareyJPWHuntKKKeyomarsiK 2018 Low-molecular-weight cyclin E in human cancer: cellular consequences and opportunities for targeted therapies. Cancer Research 78 54815491. (https://doi.org/10.1158/0008-5472.CAN-18-1235)

    • Search Google Scholar
    • Export Citation
  • ConroyAStockettDEWalkerDArkinMRHochUFoxJAHawtinRE 2009 SNS-032 is a potent and selective CDK 2, 7 and 9 inhibitor that drives target modulation in patient samples. Cancer Chemotherapy and Pharmacology 64 723732. (https://doi.org/10.1007/s00280-008-0921-5)

    • Search Google Scholar
    • Export Citation
  • CoppeJPDesprezPYKrtolicaACampisiJ 2010 The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology 5 99118. (https://doi.org/10.1146/annurev-pathol-121808-102144)

    • Search Google Scholar
    • Export Citation
  • CornellLWanderSAVisalTWagleNShapiroGI 2019 MicroRNA-mediated suppression of the TGF-β pathway confers transmissible and reversible CDK4/6 inhibitor resistance. Cell Reports 26 26672680.e7. (https://doi.org/10.1016/j.celrep.2019.02.023)

    • Search Google Scholar
    • Export Citation
  • CristofanilliMTurnerNCBondarenkoIRoJImSAMasudaNColleoniMDeMicheleALoiSVermaS 2016 Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet: Oncology 17 425439. (https://doi.org/10.1016/S1470-2045(15)00613-0)

    • Search Google Scholar
    • Export Citation
  • CuriglianoGGómez PardoPMeric-BernstamFContePLolkemaMPBeckJTBardiaAMartínez GarcíaMPenault-LlorcaFDhuriaS 2016 Ribociclib plus letrozole in early breast cancer: a presurgical, window-of-opportunity study. Breast 28 191198. (https://doi.org/10.1016/j.breast.2016.06.008)

    • Search Google Scholar
    • Export Citation
  • CurtisCShahSPChinSFTurashviliGRuedaOMDunningMJSpeedDLynchAGSamarajiwaSYuanY 2012 The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486 346352. (https://doi.org/10.1038/nature10983)

    • Search Google Scholar
    • Export Citation
  • DanilovAVHuSOrrBGodekKMustachioLMSekulaDLiuXKawakamiMJohnsonFMComptonDA 2016 Dinaciclib induces anaphase catastrophe in lung cancer cells via inhibition of cyclin-dependent kinases 1 and 2. Molecular Cancer Therapeutics 15 27582766. (https://doi.org/10.1158/1535-7163.MCT-16-0127)

    • Search Google Scholar
    • Export Citation
  • DavidgeBde Oliveira RebolaKGOAgborLNSigmundCDSingerJD 2019 Cul3 regulates cyclin E1 protein abundance via a degron located within the N-terminal region of cyclin E. Journal of Cell Science 132 jcs233049. (https://doi.org/10.1242/jcs.233049)

    • Search Google Scholar
    • Export Citation
  • DeanJLThangavelCMcClendonAKReedCAKnudsenES 2010 Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene 29 40184032. (https://doi.org/10.1038/onc.2010.154)

    • Search Google Scholar
    • Export Citation
  • DeMicheleAClarkASTanKSHeitjanDFGramlichKGallagherMLalPFeldmanMZhangPColamecoC 2015 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment<sup>+</sup> advanced breast cancer. Clinical Cancer Research 21 9951001. (https://doi.org/10.1158/1078-0432.CCR-14-2258)

    • Search Google Scholar
    • Export Citation
  • DeMicheleAShihNKoehlerMHuang BartlettCJiangYHarwickJHuangDZhengXClarkAColamecoC 2016 Abstract P4-13-04: Upregulation of cell cycle pathway genes without loss of RB1 contributes to acquired resistance to single-agent treatment with palbociclib in breast cancer. Cancer Research 76 (4 Suppl) P4-13-04. (https://doi.org/10.1158/1538-7445.SABCS15-P4-13-04)

    • Search Google Scholar
    • Export Citation
  • DesmedtCOuriaghliFEDurbecqVSoreeAColozzaMAAzambujaEPaesmansMLarsimontDBuyseMHarrisA 2006 Impact of cyclins E, neutrophil elastase and proteinase 3 expression levels on clinical outcome in primary breast cancer patients. International Journal of Cancer 119 25392545. (https://doi.org/10.1002/ijc.22149)

    • Search Google Scholar
    • Export Citation
  • DhillonNKMudryjM 2002 Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest. Oncogene 21 46264634. (https://doi.org/10.1038/sj.onc.1205576)

    • Search Google Scholar
    • Export Citation
  • DoostanIKarakasCKohansalMLowKHEllisMJOlsonJASumanVJHuntKKMoulder-ThompsonSLKeyomarsiK 2017 Cytoplasmic cyclin E mediates resistance to aromatase inhibitors in breast cancer. Clinical Cancer Research 23 72887300. (https://doi.org/10.1158/1078-0432.CCR-17-1544)

    • Search Google Scholar
    • Export Citation
  • DuffySFamHKWangYKStylesEBKimJHAngJSSinghTLarionovVShahSPAndrewsB 2016 Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. PNAS 113 99679976. (https://doi.org/10.1073/pnas.1611839113)

    • Search Google Scholar
    • Export Citation
  • El MessaoudiSFabbrizioERodriguezCChuchanaPFauquierLChengDTheilletCVandelLBedfordMTSardetC 2006 Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. PNAS 103 1335113356. (https://doi.org/10.1073/pnas.0605692103)

    • Search Google Scholar
    • Export Citation
  • FergusonRLMallerJL 2008 Cyclin E-dependent localization of MCM5 regulates centrosome duplication. Journal of Cell Science 121 32243232. (https://doi.org/10.1242/jcs.034702)

    • Search Google Scholar
    • Export Citation
  • FinnRSCrownJPLangIBoerKBondarenkoIMKulykSOEttlJPatelRPinterTSchmidtM 2015 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet: Oncology 16 2535. (https://doi.org/10.1016/S1470-2045(14)71159-3)

    • Search Google Scholar
    • Export Citation
  • FinnRSMartinMRugoHSJonesSImSAGelmonKHarbeckNLipatovONWalsheJMMoulderS 2016 Palbociclib and letrozole in advanced breast cancer. New England Journal of Medicine 375 19251936. (https://doi.org/10.1056/NEJMoa1607303)

    • Search Google Scholar
    • Export Citation
  • FinnRSLiuYZhuZMartínMRugoHSDiérasVImSAGelmonKAHarbeckNLuDR 2019 Biomarker analyses of response to cyclin dependent kinase 4/6 inhibition and endocrine therapy in women With treatment-naïve metastatic breast cancer. Clinical Cancer Research 26 110121. (https://doi.org/10.1158/1078-0432.CCR-19-0751)

    • Search Google Scholar
    • Export Citation
  • FormisanoLLuYServettoAHankerABJansenVMBauerJASudhanDRGuerrero-ZotanoALCroessmannSGuoY 2019 Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nature Communications 10 1373. (https://doi.org/10.1038/s41467-019-09068-2)

    • Search Google Scholar
    • Export Citation
  • FumagalliDWilsonTRSalgadoRLuXYuJO’BrienCWalterKHuwLYCriscitielloCLaiosI 2016 Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Annals of Oncology 27 18601866. (https://doi.org/10.1093/annonc/mdw286)

    • Search Google Scholar
    • Export Citation
  • FungTKPoonRY 2005 A roller coaster ride with the mitotic cyclins. Seminars in Cell and Developmental Biology 16 335342. (https://doi.org/10.1016/j.semcdb.2005.02.014)

    • Search Google Scholar
    • Export Citation
  • GengYYuQSicinskaEDasMSchneiderJEBhattacharyaSRideoutWMBronsonRTGardnerHSicinskiP 2003 Cyclin E ablation in the mouse. Cell 114 431443. (https://doi.org/10.1016/s0092-8674(03)00645-7)

    • Search Google Scholar
    • Export Citation
  • GengYLeeYMWelckerMSwangerJZagozdzonAWinerJDRobertsJMKaldisPClurmanBESicinskiP 2007 Kinase-independent function of cyclin E. Molecular Cell 25 127139. (https://doi.org/10.1016/j.molcel.2006.11.029)

    • Search Google Scholar
    • Export Citation
  • GengYMichowskiWChickJMWangYEJecroisMESweeneyKELiuLHanRCKeNZagozdzonA 2018 Kinase-independent function of E-type cyclins in liver cancer. PNAS 115 10151020. (https://doi.org/10.1073/pnas.1711477115)

    • Search Google Scholar
    • Export Citation
  • GoetzMPToiMCamponeMSohnJPaluch-ShimonSHuoberJParkIHTrédanOChenSCMansoL 2017 MONARCH 3: Abemaciclib as initial therapy for advanced breast cancer. Journal of Clinical Oncology 35 36383646. (https://doi.org/10.1200/JCO.2017.75.6155)

    • Search Google Scholar
    • Export Citation
  • GudasJMPaytonMThukralSChenEBassMRobinsonMOCoatsS 1999 Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Molecular and Cellular Biology 19 612622. (https://doi.org/10.1128/mcb.19.1.612)

    • Search Google Scholar
    • Export Citation
  • HaagensonKKTaitLWangJShekharMPPolinLChenWWuGS 2012 Cullin-3 protein expression levels correlate with breast cancer progression. Cancer Biology and Therapy 13 10421046. (https://doi.org/10.4161/cbt.21046)

    • Search Google Scholar
    • Export Citation
  • HafnerMMillsCESubramanianKChenCChungMBoswellSAEverleyRALiuCWalmsleyCSJuricD 2019 Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chemical Biology 26 10671080.e8. (https://doi.org/10.1016/j.chembiol.2019.05.005)

    • Search Google Scholar
    • Export Citation
  • HallCRBisiJEStrumJC 2019 Abstract 4414: Inhibition of CDK2 overcomes primary and acquired resistance to CDK4/6 inhibitors. Cancer Research 79 (13 Suppl) 4414. (https://doi.org/10.1158/1538-7445.AM2019-4414)

    • Search Google Scholar
    • Export Citation
  • Herrera-AbreuMTPalafoxMAsgharURivasMACuttsRJGarcia-MurillasIPearsonAGuzmanMRodriguezOGruesoJ 2016 Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Research 76 23012313. (https://doi.org/10.1158/0008-5472.CAN-15-0728)

    • Search Google Scholar
    • Export Citation
  • HoriuchiDHuskeyNEKusdraLWohlboldLMerrickKAZhangCCreasmanKJShokatKMFisherRPGogaA 2012 Chemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogenic pathways. PNAS 109 E1019E1027. (https://doi.org/10.1073/pnas.1111317109)

    • Search Google Scholar
    • Export Citation
  • HortobagyiGNStemmerSMBurrisHAYapYSSonkeGSPaluch-ShimonSCamponeMBlackwellKLAndréFWinerEP 2016 Ribociclib as first-line therapy for HR-positive, advanced breast cancer. New England Journal of Medicine 375 17381748. (https://doi.org/10.1056/NEJMoa1609709)

    • Search Google Scholar
    • Export Citation
  • HortobagyiGNPaluch-ShimonSPetrakovaKVillanuevaCChanANuschAYapYSHartLFavretAMarschnerN 2018 First-line ribociclib (RIB) + letrozole (LET) in hormone receptor-positive (HR+), HER2-negative (HER2–) advanced breast cancer (ABC): MONALEESA-2 biomarker analyses. Journal of Clinical Oncology 36 10221022. (https://doi.org/10.1200/JCO.2018.36.15_suppl.1022)

    • Search Google Scholar
    • Export Citation
  • HuJQiaoMChenYTangHZhangWTangDPiSDaiJTangNHuangA 2018 Cyclin E2-CDK2 mediates SAMHD1 phosphorylation to abrogate its restriction of HBV replication in hepatoma cells. FEBS Letters 592 18931904. (https://doi.org/10.1002/1873-3468.13105)

    • Search Google Scholar
    • Export Citation
  • HuangLZhaoSFrasorJMDaiY 2011 An integrated bioinformatics approach identifies elevated cyclin E2 expression and E2F activity as distinct features of tamoxifen resistant breast tumors. PLoS ONE 6 e22274. (https://doi.org/10.1371/journal.pone.0022274)

    • Search Google Scholar
    • Export Citation
  • HuiRFinneyGLCarrollJSLeeCSLMusgroveEASutherlandRL 2002 Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Research 62 69166923.

    • Search Google Scholar
    • Export Citation
  • HwangHCClurmanBE 2005 Cyclin E in normal and neoplastic cell cycles. Oncogene 24 27762786. (https://doi.org/10.1038/sj.onc.1208613)

  • IidaMNakamuraMTokudaEToyosawaDNiwaTOhuchiNIshidaTHayashiSI 2019 The p21 levels have the potential to be a monitoring marker for ribociclib in breast cancer. Oncotarget 10 49074918. (https://doi.org/10.18632/oncotarget.27127)

    • Search Google Scholar
    • Export Citation
  • ImSALuYSBardiaAHarbeckNColleoniMFrankeFChowLSohnJLeeKSCampos-GomezS 2019 Overall survival with ribociclib plus endocrine therapy in breast cancer. New England Journal of Medicine 381 307316. (https://doi.org/10.1056/NEJMoa1903765)

    • Search Google Scholar
    • Export Citation
  • JansenMPHMReijmEASieuwertsAMRuigrok-RitstierKLookMPRodríguez-GonzálezFGHeineAAJMartensJWSleijferSFoekensJA 2012 High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer. Breast Cancer Research and Treatment 133 937947. (https://doi.org/10.1007/s10549-011-1877-4)

    • Search Google Scholar
    • Export Citation
  • JansenVMBholaNEBauerJAFormisanoLLeeKMHutchinsonKEWitkiewiczAKMoorePDEstradaMVSanchezV 2017 Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer. Cancer Research 77 24882499. (https://doi.org/10.1158/0008-5472.CAN-16-2653)

    • Search Google Scholar
    • Export Citation
  • JiWShiYWangXHeWTangLTianSJiangHShuYGuanX 2019 Combined androgen receptor blockade overcomes the resistance of breast cancer cells to palbociclib. International Journal of Biological Sciences 15 522532. (https://doi.org/10.7150/ijbs.30572)

    • Search Google Scholar
    • Export Citation
  • JohnstonSPuhallaSWheatleyDRingABarryPHolcombeCBoileauJFProvencherLRobidouxARimawiM 2019 Randomized phase II study evaluating palbociclib in addition to letrozole as neoadjuvant therapy in estrogen receptor-positive early breast cancer: PALLET trial. Journal of Clinical Oncology 37 178189. (https://doi.org/10.1200/JCO.18.01624)

    • Search Google Scholar
    • Export Citation
  • JuLGZhuYLongQYLiXJLinXTangSBYinLXiaoYWangXHLiL 2019 SPOP suppresses prostate cancer through regulation of cyclin E1 stability. Cell Death and Differentiation 26 11561168. (https://doi.org/10.1038/s41418-018-0198-0)

    • Search Google Scholar
    • Export Citation
  • KarakasCBiernackaABuiTSahinAAYiMAkliSSchaferJAlexanderAAdjapongOHuntKK 2016 Cytoplasmic cyclin E and phospho-cyclin-dependent kinase 2 are biomarkers of aggressive breast cancer. American Journal of Pathology 186 19001912. (https://doi.org/10.1016/j.ajpath.2016.02.024)

    • Search Google Scholar
    • Export Citation
  • KarstAMJonesPMVenaNLigonAHLiuJFHirschMSEtemadmoghadamDBowtellDDLDrapkinR 2014 Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Research 74 11411152. (https://doi.org/10.1158/0008-5472.CAN-13-2247)

    • Search Google Scholar
    • Export Citation
  • KeckJMSummersMKTedescoDEkholm-ReedSChuangLCJacksonPKReedSI 2007 Cyclin E overexpression impairs progression through mitosis by inhibiting APCCdh1. Journal of Cell Biology 178 371385. (https://doi.org/10.1083/jcb.200703202)

    • Search Google Scholar
    • Export Citation
  • KettnerNMVijayaraghavanSDurakMGBuiTKohansalMHaMJLiuBRaoXWangJYiM 2019 Combined inhibition of STAT3 and DNA repair in palbociclib-resistant ER-positive breast cancer. Clinical Cancer Research 25 3996–4013. (https://doi.org/10.1158/1078-0432.CCR-18-3274)

    • Search Google Scholar
    • Export Citation
  • KleinMEKovatchevaMDavisLETapWDKoffA 2018 CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer Cell 34 920. (https://doi.org/10.1016/j.ccell.2018.03.023)

    • Search Google Scholar
    • Export Citation
  • KlotzKCepedaDTanYSunDSangfeltOSpruckC 2009 SCFFbxw7/hCdc4 targets cyclin E2 for ubiquitin-dependent proteolysis. Experimental Cell Research 315 18321839. (https://doi.org/10.1016/j.yexcr.2008.11.017)

    • Search Google Scholar
    • Export Citation
  • KongTXueYCencicRZhuXMonastAFuZPilonVSangwanVGuiotMCFoulkesWD 2019 eIF4A inhibitors suppress cell cycle feedback response and acquired resistance to CDK4/6 inhibition in cancer. Molecular Cancer Therapeutics 18 21582170. (https://doi.org/10.1158/1535-7163.MCT-19-0162)

    • Search Google Scholar
    • Export Citation
  • LiYZouLLiQHaibe-KainsBTianRLiYDesmedtCSotiriouCSzallasiZIglehartJD 2010 Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nature Medicine 16 214218. (https://doi.org/10.1038/nm.2090)

    • Search Google Scholar
    • Export Citation
  • LiCAoJFuJLeeDFXuJLonardDO’MalleyBW 2011 Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 30 43504364. (https://doi.org/10.1038/onc.2011.151)

    • Search Google Scholar
    • Export Citation
  • LouieMCMcClellanASiewitCKawabataL 2010 Estrogen receptor regulates E2F1 expression to mediate tamoxifen resistance. Molecular Cancer Research 8 343352. (https://doi.org/10.1158/1541-7786.MCR-09-0395)

    • Search Google Scholar
    • Export Citation
  • LuY-SHurvitzSASuFHeWTripathyDGomezSCJungKHColleoniMWheatley-PricePKuemmelS 2019 In-depth gene expression analysis of premenopausal patients with HR+/HER2− advanced breast cancer (ABC) treated with ribociclib-containing therapy in the Phase III MONALEESA-7 trial. Journal of Clinical Oncology 37 10181018. (https://doi.org/10.1200/JCO.2019.37.15_suppl.1018)

    • Search Google Scholar
    • Export Citation
  • LypovaNLancetaLGibsonAVegaSGarza-MoralesRMcMastersKMChesneyJGomez-GutierrezJGImbert-FernandezY 2019 Targeting palbociclib-resistant estrogen receptor-positive breast cancer cells via oncolytic virotherapy. Cancers 11 684. (https://doi.org/10.3390/cancers11050684)

    • Search Google Scholar
    • Export Citation
  • MaCXGaoFLuoJNorthfeltDWGoetzMForeroAHoogJNaughtonMAdemuyiwaFSureshR 2017 NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor–positive breast cancer. Clinical Cancer Research 23 40554065. (https://doi.org/10.1158/1078-0432.CCR-16-3206)

    • Search Google Scholar
    • Export Citation
  • MalumbresMPevarelloPBarbacidMBischoffJR 2008 CDK inhibitors in cancer therapy: what is next? Trends in Pharmacological Sciences 29 1621. (https://doi.org/10.1016/j.tips.2007.10.012)

    • Search Google Scholar
    • Export Citation
  • MartinsVKilburnLDodsonAModiAPogue-GeileKLRimawiMFHuggins-PuhallaSLBartlettCHPerrySBattenL 2019 Biomarker analysis of PALLET: a neoadjuvant trial of letrozole (L) ± palbociclib (P). Journal of Clinical Oncology 37 570570. (https://doi.org/10.1200/JCO.2019.37.15_suppl.570)

    • Search Google Scholar
    • Export Citation
  • MenonTYatesJABocharDA 2010 Regulation of androgen-responsive transcription by the chromatin remodeling factor CHD8. Molecular Endocrinology 24 11651174. (https://doi.org/10.1210/me.2009-0421)

    • Search Google Scholar
    • Export Citation
  • MichaloglouCCrafterCSiersbaekRDelpuechOCurwenJOCarnevalliLSStaniszewskaADPolanskaUMCheraghchi-BashiALawsonM 2018 Combined inhibition of mTOR and CDK4/6 is required for optimal blockade of E2F function and long-term growth inhibition in estrogen receptor–positive breast cancer. Molecular Cancer Therapeutics 17 908920. (https://doi.org/10.1158/1535-7163.MCT-17-0537)

    • Search Google Scholar
    • Export Citation
  • MillerTWBalkoJMFoxEMGhazouiZDunbierAAndersonHDowsettMJiangASmithRAMairaSM 2011 ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discovery 1 338351. (https://doi.org/10.1158/2159-8290.CD-11-0101)

    • Search Google Scholar
    • Export Citation
  • MüllersESilva CascalesHBurdovaKMacurekLLindqvistA 2017 Residual Cdk1/2 activity after DNA damage promotes senescence. Aging Cell 16 575584. (https://doi.org/10.1111/acel.12588)

    • Search Google Scholar
    • Export Citation
  • MusgroveEASergioCMLoiSInmanCKAndersonLRAllesMCPineseMCaldonCESchutteJGardiner-GardenM 2008 Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS ONE 3 e2987. (https://doi.org/10.1371/journal.pone.0002987)

    • Search Google Scholar
    • Export Citation
  • NakayamaKNagahamaHMinamishimaYAMatsumotoMNakamichiIKitagawaKShiraneMTsunematsuRTsukiyamaTIshidaN 2000 Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO Journal 19 20692081. (https://doi.org/10.1093/emboj/19.9.2069)

    • Search Google Scholar
    • Export Citation
  • NatrajanRMackayAWilkersonPMLambrosMBWetterskogDArnedosMShiuKKGeyerFCLangerødAKreikeB 2012 Functional characterization of the 19q12 amplicon in grade III breast cancers. Breast Cancer Research 14 R53. (https://doi.org/10.1186/bcr3154)

    • Search Google Scholar
    • Export Citation
  • O’LearyBCuttsRJLiuYHrebienSHuangXFenwickKAndréFLoiblSLoiSGarcia-MurillasI 2018 The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discovery 8 13901403. (https://doi.org/10.1158/2159-8290.CD-18-0264)

    • Search Google Scholar
    • Export Citation
  • PaternotSColleoniBBisteauXRogerPP 2014 The CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes activated cyclin D3-CDK4/6 complexes. Cell Cycle 13 28792888. (https://doi.org/10.4161/15384101.2014.946841)

    • Search Google Scholar
    • Export Citation
  • PaytonMScullySChungGCoatsS 2002 Deregulation of cyclin E2 expression and associated kinase activity in primary breast tumors. Oncogene 21 85298534. (https://doi.org/10.1038/sj.onc.1206035)

    • Search Google Scholar
    • Export Citation
  • Perez-NeutMShumACuevasBDMillerRGentileS 2015 Stimulation of hERG1 channel activity promotes a calcium-dependent degradation of cyclin E2, but not cyclin E1, in breast cancer cells. Oncotarget 6 16311639. (https://doi.org/10.18632/oncotarget.2829)

    • Search Google Scholar
    • Export Citation
  • PorterPLBarlowWEYehITLinMGYuanXPDonatoESledgeGWShapiroCLIngleJNHaskellCM 2006 p27(Kip1) and cyclin E expression and breast cancer survival after treatment with adjuvant chemotherapy. Journal of the National Cancer Institute 98 17231731. (https://doi.org/10.1093/jnci/djj467)

    • Search Google Scholar
    • Export Citation
  • PortmanNAlexandrouSCarsonEWangSLimECaldonCE 2019 Overcoming CDK4/6 inhibitor resistance in ER positive breast cancer. Endocrine-Related Cancer 26 R15R30. (https://doi.org/10.1530/ERC-18-0317)

    • Search Google Scholar
    • Export Citation
  • PostAEMBussinkJSweepFCGJSpanPN 2019 Changes in DNA damage repair gene expression and cell cycle gene expression do not explain radioresistance in tamoxifen-resistant breast cancer. Oncology Research 28 3340. (https://doi.org/10.3727/096504019X15555794826018)

    • Search Google Scholar
    • Export Citation
  • PrallOWSarcevicBMusgroveEAWattsCKSutherlandRL 1997 Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. Journal of Biological Chemistry 272 1088210894. (https://doi.org/10.1074/jbc.272.16.10882)

    • Search Google Scholar
    • Export Citation
  • RavaioliAMontiFReganMMMaffiniFMastropasquaMGSpataroVCastiglione-GertschMPanziniIGianniLGoldhirschA 2008 p27 and Skp2 immunoreactivity and its clinical significance with endocrine and chemo-endocrine treatments in node-negative early breast cancer. Annals of Oncology 19 660668. (https://doi.org/10.1093/annonc/mdm547)

    • Search Google Scholar
    • Export Citation
  • RogersSGlossBSLeeCSSergioCMDingerMEMusgroveEABurgessACaldonCE 2015 Cyclin E2 is the predominant E-cyclin associated with NPAT in breast cancer cells. Cell Division 10 1. (https://doi.org/10.1186/s13008-015-0007-9)

    • Search Google Scholar
    • Export Citation
  • RugoHSFinnRSDiérasVEttlJLipatovOJoyAAHarbeckNCastrellonAIyerSLuDR 2019 Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Research and Treatment 174 719729. (https://doi.org/10.1007/s10549-018-05125-4)

    • Search Google Scholar
    • Export Citation
  • SalonCMerdzhanovaGBrambillaCBrambillaEGazzeriSEyminB 2007 E2F-1, Skp2 and cyclin E oncoproteins are upregulated and directly correlated in high-grade neuroendocrine lung tumors. Oncogene 26 69276936. (https://doi.org/10.1038/sj.onc.1210499)

    • Search Google Scholar
    • Export Citation
  • ScaltritiMEichhornPJCortésJPrudkinLAuraCJiménezJChandarlapatySSerraVPratAIbrahimYH 2011 Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. PNAS 108 37613766. (https://doi.org/10.1073/pnas.1014835108)

    • Search Google Scholar
    • Export Citation
  • SheppardKEMcArthurGA 2013 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clinical Cancer Research 19 53205328. (https://doi.org/10.1158/1078-0432.CCR-13-0259)

    • Search Google Scholar
    • Export Citation
  • SherrCJRobertsJM 1999 CDK inhibitors: positive and negative regulators of G1-phase progression. Genes and Development 13 15011512. (https://doi.org/10.1101/gad.13.12.1501)

    • Search Google Scholar
    • Export Citation
  • SieuwertsAMLookMPMeijer-van GelderMETimmermansMTrapmanAMGarciaRRArnoldMGoedheerAJde WeerdVPortengenH 2006 Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clinical Cancer Research 12 33193328. (https://doi.org/10.1158/1078-0432.CCR-06-0225)

    • Search Google Scholar
    • Export Citation
  • SiuKTRosnerMRMinellaAC 2012 An integrated view of cyclin E function and regulation. Cell Cycle 11 5764. (https://doi.org/10.4161/cc.11.1.18775)

    • Search Google Scholar
    • Export Citation
  • SotiriouCWirapatiPLoiSHarrisAFoxSSmedsJNordgrenHFarmerPPrazVHaibe-KainsB 2006 Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute 98 262272. (https://doi.org/10.1093/jnci/djj052)

    • Search Google Scholar
    • Export Citation
  • SpanPNTjan-HeijnenVCMandersPBeexLVSweepCG 2003 Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 22 48984904. (https://doi.org/10.1038/sj.onc.1206818)

    • Search Google Scholar
    • Export Citation
  • TadesseSCaldonECTilleyWWangS 2019a Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. Journal of Medicinal Chemistry 62 42334251. (https://doi.org/10.1021/acs.jmedchem.8b01469)

    • Search Google Scholar
    • Export Citation
  • TadesseSAnshaboATPortmanNLimETilleyWCaldonCEWangS 2019b Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discovery Today 25 406–413. (https://doi.org/10.1016/j.drudis.2019.12.001)

    • Search Google Scholar
    • Export Citation
  • TakadaMZhangWSuzukiAKurodaTSYuZInuzukaHGaoDWanLZhuangMHuL 2017 FBW7 loss promotes chromosomal instability and tumorigenesis via cyclin E1/CDK2–mediated phosphorylation of CENP-A. Cancer Research 77 48814893. (https://doi.org/10.1158/0008-5472.CAN-17-1240)

    • Search Google Scholar
    • Export Citation
  • TeixeiraLKWangXLiYEkholm-ReedSWuXWangPReedSI 2015 Cyclin E deregulation promotes loss of specific genomic regions. Current Biology 25 13271333. (https://doi.org/10.1016/j.cub.2015.03.022)

    • Search Google Scholar
    • Export Citation
  • TripathyDImSAColleoniMFrankeFBardiaAHarbeckNHurvitzSAChowLSohnJLeeKS 2018 Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet: Oncology 19 904915. (https://doi.org/10.1016/S1470-2045(18)30292-4)

    • Search Google Scholar
    • Export Citation
  • TsubariMTaipaleJTiihonenEKeski-OjaJLaihoM 1999 Hepatocyte growth factor releases mink epithelial cells from transforming growth factor β1-induced growth arrest by restoring Cdk6 expression and cyclin E-associated Cdk2 activity. Molecular and Cellular Biology 19 36543663. (https://doi.org/10.1128/mcb.19.5.3654)

    • Search Google Scholar
    • Export Citation
  • TuSHHoCTLiuMFHuangCSChangHWChangCHWuCHHoYS 2013 Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chemistry 141 15531561. (https://doi.org/10.1016/j.foodchem.2013.04.077)

    • Search Google Scholar
    • Export Citation
  • TurnerNCHuang BartlettCCristofanilliM 2015 Palbociclib in hormone-receptor-positive advanced breast cancer. New England Journal of Medicine 373 16721673. (https://doi.org/10.1056/NEJMc1510345)

    • Search Google Scholar
    • Export Citation
  • TurnerNCSlamonDJRoJBondarenkoIImSAMasudaNColleoniMDeMicheleALoiSVermaS 2018 Overall survival with palbociclib and fulvestrant in advanced breast cancer. New England Journal of Medicine 379 19261936. (https://doi.org/10.1056/NEJMoa1810527)

    • Search Google Scholar
    • Export Citation
  • TurnerNCLiuYZhuZLoiSColleoniMLoiblSDeMicheleAHarbeckNAndreFBayarMA 2019 Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer. Journal of Clinical Oncology 37 11691178. (https://doi.org/10.1200/JCO.18.00925)

    • Search Google Scholar
    • Export Citation
  • van’t VeerLJDaiHvan de VijverMJHeYDHartAAMaoMPeterseHLvan der KooyKMartonMJWitteveenAT 2002 Gene expression profiling predicts clinical outcome of breast cancer. Nature 415 530536. (https://doi.org/10.1038/415530a)

    • Search Google Scholar
    • Export Citation
  • VijayaraghavanSKarakasCDoostanIChenXBuiTYiMRaghavendraASZhaoYBashourSIIbrahimNK 2017 CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nature Communications 8 15916. (https://doi.org/10.1038/ncomms15916)

    • Search Google Scholar
    • Export Citation
  • WeiGWangYZhangPLuJMaoJH 2012 Evaluating the prognostic significance of FBXW7 expression level in human breast cancer by a meta-analysis of transcriptional profiles. Journal of Cancer Science and Therapy 4 299305. (https://doi.org/10.4172/1948-5956.1000158)

    • Search Google Scholar
    • Export Citation
  • WelckerMSingerJLoebKRGrimJBloecherAGurien-WestMClurmanBERobertsJM 2003 Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Molecular Cell 12 381392. (https://doi.org/10.1016/s1097-2765(03)00287-9)

    • Search Google Scholar
    • Export Citation
  • WittrupALiebermanJ 2015 Knocking down disease: a progress report on siRNA therapeutics. Nature Reviews: Genetics 16 543552. (https://doi.org/10.1038/nrg3978)

    • Search Google Scholar
    • Export Citation
  • YamCHFungTKPoonRY 2002 Cyclin A in cell cycle control and cancer. Cellular and Molecular Life Sciences 59 13171326. (https://doi.org/10.1007/s00018-002-8510-y)

    • Search Google Scholar
    • Export Citation
  • YangCLiZBhattTDicklerMGiriDScaltritiMBaselgaJRosenNChandarlapatyS 2017 Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36 22552264. (https://doi.org/10.1038/onc.2016.379)

    • Search Google Scholar
    • Export Citation
  • ZalzaliHNasrBHarajlyMBasmaHGhamloushFGhayadSGhanemNEvanGISaabR 2015 CDK2 transcriptional repression is an essential effector in p53-dependent cellular senescence – implications for therapeutic intervention. Molecular Cancer Research 13 2940. (https://doi.org/10.1158/1541-7786.MCR-14-0163)

    • Search Google Scholar
    • Export Citation
  • ZariwalaMLiuJXiongY 1998 Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins. Oncogene 17 27872798. (https://doi.org/10.1038/sj.onc.1202505)

    • Search Google Scholar
    • Export Citation