ARMC5 variants in PRKAR1A-mutated patients modify cortisol levels and Cushing’s syndrome

in Endocrine-Related Cancer

Correspondence should be addressed to A G Maria: andreagutierrez.maria@nih.gov
Restricted access

Mutations in the protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) and armadillo repeat-containing 5 (ARMC5) genes cause Cushing‘s syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD) and primary bilateral macronodular adrenocortical hyperplasia (PBMAH), respectively. Between the two genes, ARMC5 is highly polymorphic with several variants in the population, whereas PRKAR1A has very little, if any, non-pathogenic variation in its coding sequence. We tested the hypothesis that ARMC5 variants may affect the clinical presentation of PPNAD and CS among patients with PRKAR1A mutations. In this study, 91 patients with PPNAD due to PRKAR1A mutations were tested for abnormal cortisol secretion or CS and for ARMC5 sequence variants. Abnormal cortisol secretion was present in 71 of 74 patients with ARMC5 variants, whereas 11 of 17 patients negative for ARMC5 variants did not have hypercortisolemia. The presence of ARMC5 variants was a statistically strong predictor of CS among patients with PRKAR1A mutations (P < 0.001). Among patients with CS due to PPNAD, ARMC5 variants were associated with lower cortisol levels at baseline (P = 0.04) and after high dose dexamethasone administration (P = 0.02). The ARMC5 p.I170V variant increased ARMC5 protein accumulation in vitro and decreased viability of NCI-H295 cells (but not HEK 293T cells). PPNAD tissues with ARMC5 variants showed stronger ARMC5 protein expression than those that carried a normal ARMC5 sequence. Taken together, our results suggest that ARMC5 variants among patients with PPNAD due to PRKAR1A defects may play the role of a genetic modifier for the presence and severity of hypercortisolemia.

Supplementary Materials

    • Supplementary Table 1: ARMC5 variants in Cushing syndrome patients. ARMC5 variants at protein level found in germline DNA of PPNAD individuals with Cushing syndrome. Number of mutated and total alleles found in gnomAD data base and in the studied cohort are shown.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 65 65 65
Full Text Views 5 5 5
PDF Downloads 2 2 2
  • AlmeidaMQAzevedoMFXekoukiPBimpakiEIHorvathACollinsMTKaravitiLPJehaGSBhattacharyyaNCheadleC 2012 Activation of cyclic AMP signaling leads to different pathway alterations in lesions of the adrenal cortex caused by germline PRKAR1A defects versus those due to somatic GNAS mutations. Journal of Clinical Endocrinology and Metabolism 97 E687E693. (https://doi.org/10.1210/jc.2011-3000)

    • Search Google Scholar
    • Export Citation
  • AlmeidaMQHarranMBimpakiEIHsiaoHPHorvathACheadleCWatkinsTNesterovaMStratakisCA 2011 Integrated genomic analysis of nodular tissue in macronodular adrenocortical hyperplasia: progression of tumorigenesis in a disorder associated with multiple benign lesions. Journal of Clinical Endocrinology and Metabolism 96 E728E738. (https://doi.org/10.1210/jc.2010-2420)

    • Search Google Scholar
    • Export Citation
  • AlmeidaMQStratakisCA 2011 How does cAMP/protein kinase A signaling lead to tumors in the adrenal cortex and other tissues? Molecular and Cellular Endocrinology 336 162168. (https://doi.org/10.1016/j.mce.2010.11.018)

    • Search Google Scholar
    • Export Citation
  • AssiéGLibéREspiardSRizk-RabinMGuimierALuscapWBarreauOLefèvreLSibonyMGuignatL 2013 ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. New England Journal of Medicine 369 21052114. (https://doi.org/10.1056/NEJMoa1304603)

    • Search Google Scholar
    • Export Citation
  • BertheratJGroussinLSandriniFMatyakhinaLBeiTStergiopoulosSPapageorgiouTBourdeauIKirschnerLSVincent-DejeanC 2003 Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Research 63 53085319.

    • Search Google Scholar
    • Export Citation
  • BertheratJHorvathAGroussinLGrabarSBoikosSCazabatLLibeRRené-CorailFStergiopoulosSBourdeauI 2009 Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. Journal of Clinical Endocrinology and Metabolism 94 20852091. (https://doi.org/10.1210/jc.2008-2333)

    • Search Google Scholar
    • Export Citation
  • BerthonAFauczFBertheratJStratakisCA 2017a Analysis of ARMC5 expression in human tissues. Molecular and Cellular Endocrinology 441 140145. (https://doi.org/10.1016/j.mce.2016.08.018)

    • Search Google Scholar
    • Export Citation
  • BerthonAFauczFREspiardSDrougatLBertheratJStratakisCA 2017b Age-dependent effects of Armc5 haploinsufficiency on adrenocortical function. Human Molecular Genetics 26 34953507. (https://doi.org/10.1093/hmg/ddx235)

    • Search Google Scholar
    • Export Citation
  • BimpakiEIIliopoulosDMoraitisAStratakisCA 2010 MicroRNA signature in massive macronodular adrenocortical disease and implications for adrenocortical tumourigenesis. Clinical Endocrinology 72 744751. (https://doi.org/10.1111/j.1365-2265.2009.03725.x)

    • Search Google Scholar
    • Export Citation
  • BourdeauIAntoniniSRLacroixAKirschnerLSMatyakhinaLLorangDLibuttiSKStratakisCA 2004 Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 23 15751585. (https://doi.org/10.1038/sj.onc.1207277)

    • Search Google Scholar
    • Export Citation
  • BourdeauIMatyakhinaLStergiopoulosSGSandriniFBoikosSStratakisCA 2006 17q22-24 chromosomal losses and alterations of protein kinase A subunit expression and activity in adrenocorticotropin-independent macronodular adrenal hyperplasia. Journal of Clinical Endocrinology and Metabolism 91 36263632. (https://doi.org/10.1210/jc.2005-2608)

    • Search Google Scholar
    • Export Citation
  • CavalcanteIPVaczlavikADrougatLLotfiCFPHecale-PerlemoineKRibesCRizk-RabinMClauserEFragosoMCBVBertheratJ 2020 Cullin 3 targets the tumor suppressor gene ARMC5 for ubiquitination and degradation. Endocrine-Related Cancer 27 221230. (https://doi.org/10.1530/ERC-19-0502)

    • Search Google Scholar
    • Export Citation
  • de JoussineauCSahut-BarnolaILevyISaloustrosEValPStratakisCAMartinezA 2012 The cAMP pathway and the control of adrenocortical development and growth. Molecular and Cellular Endocrinology 351 2836. (https://doi.org/10.1016/j.mce.2011.10.006)

    • Search Google Scholar
    • Export Citation
  • EspiardSDrougatLLibeRAssieGPerlemoineKGuignatLBarrandeGBrucker-DavisFDoullayFLopezS 2015 ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. Journal of Clinical Endocrinology and Metabolism 100 E926E935. (https://doi.org/10.1210/jc.2014-4204)

    • Search Google Scholar
    • Export Citation
  • EspiardSKnapeMJBathonKAssiéGRizk-RabinMFaillotSLuscap-RondofWAbidDGuignatLCalebiroD 2018 Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight 3 e98296. (https://doi.org/10.1172/jci.insight.98296)

    • Search Google Scholar
    • Export Citation
  • FauczFRZilbermintMLodishMBSzarekETrivellinGSinaiiNBerthonALibéRAssiéGEspiardS 2014 Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. Journal of Clinical Endocrinology and Metabolism 99 E1113E1119. (https://doi.org/10.1210/jc.2013-4280)

    • Search Google Scholar
    • Export Citation
  • Hannah-ShmouniFStratakisCA 2020 A gene-based classification of primary adrenocortical hyperplasias. Hormone and Metabolic Research 52 133141. (https://doi.org/10.1055/a-1107-2972)

    • Search Google Scholar
    • Export Citation
  • HorvathABertheratJGroussinLGuillaud-BatailleMTsangKCazabatLLibeRRemmersERene-CorailFFauczFR 2010 Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Human Mutation 31 369379. (https://doi.org/10.1002/humu.21178)

    • Search Google Scholar
    • Export Citation
  • HorvathABoikosSGiatzakisCRobinson-WhiteAGroussinLGriffinKJSteinELevineEDelimpasiGHsiaoHP 2006 A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nature Genetics 38 794800. (https://doi.org/10.1038/ng1809)

    • Search Google Scholar
    • Export Citation
  • HsiaoHPKirschnerLSBourdeauIKeilMFBoikosSAVermaSRobinson-WhiteAJNesterovaMLacroixAStratakisCA 2009 Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. Journal of Clinical Endocrinology and Metabolism 94 29302937. (https://doi.org/10.1210/jc.2009-0516)

    • Search Google Scholar
    • Export Citation
  • HuYLaoLMaoJJinWLuoHCharpentierTQiSPengJHuBMarcinkiewiczMM 2017 Armc5 deletion causes developmental defects and compromises T-cell immune responses. Nature Communications 8 13834. (https://doi.org/10.1038/ncomms13834)

    • Search Google Scholar
    • Export Citation
  • KirschnerLSCarneyJAPackSDTaymansSEGiatzakisCChoYSCho-ChungYSStratakisCA 2000 Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nature Genetics 26 8992. (https://doi.org/10.1038/79238)

    • Search Google Scholar
    • Export Citation
  • LecoqALStratakisCAViengchareunSChalignéRToscaLDeméocqVHageMBerthonAFauczFRHannaP 2017 Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome. JCI Insight 2 e92184. (https://doi.org/10.1172/jci.insight.92184)

    • Search Google Scholar
    • Export Citation
  • LibéRFratticciACosteJTissierFHorvathARagazzonBRene-CorailFGroussinLBertagnaXRaffin-SansonML 2008 Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clinical Cancer Research 15 40164024.

    • Search Google Scholar
    • Export Citation
  • LibéRHorvathAVezzosiDFratticciACosteJPerlemoineKRagazzonBGuillaud-BatailleMGroussinLClauserE 2011 Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. Journal of Clinical Endocrinology and Metabolism 96 E208E214. (https://doi.org/10.1210/jc.2010-1704)

    • Search Google Scholar
    • Export Citation
  • LoweKMYoungWFJrLyssikatosCStratakisCACarneyJA 2017 Cushing syndrome in Carney complex: clinical, pathologic, and molecular genetic findings in the 17 affected Mayo Clinic patients. American Journal of Surgical Pathology 41 171181. (https://doi.org/10.1097/PAS.0000000000000748)

    • Search Google Scholar
    • Export Citation
  • PereiraAMHesFJHorvathAWoortmanSGreeneEBimpakiEAlatsatianosABoikosSSmitJWRomijnJA 2010 Association of the M1V PRKAR1A mutation with primary pigmented nodular adrenocortical disease in two large families. Journal of Clinical Endocrinology and Metabolism 95 338342. (https://doi.org/10.1210/jc.2009-0993)

    • Search Google Scholar
    • Export Citation
  • SarlisNJChrousosGPDoppmanJLCarneyJAStratakisCA 1997 Primary pigmented nodular adrenocortical disease: reevaluation of a patient with carney complex 27 years after unilateral adrenalectomy. Journal of Clinical Endocrinology and Metabolism 82 12741278. (https://doi.org/10.1210/jcem.82.4.3857)

    • Search Google Scholar
    • Export Citation
  • StratakisCA 2014 E pluribus unum? The main protein kinase A catalytic subunit (PRKACA), a likely oncogene, and cortisol-producing tumors. Journal of Clinical Endocrinology and Metabolism 99 36293633. (https://doi.org/10.1210/jc.2014-3295)

    • Search Google Scholar
    • Export Citation
  • StratakisCARaygadaM 1993 Carney complex. In GeneReviews®. Eds AdamMPArdingerHHPagonRA Seattle, WA, USA: University of Washington. (available at: https://www.ncbi.nlm.nih.gov/books/NBK1286/)

    • Search Google Scholar
    • Export Citation
  • StratakisCASarlisNKirschnerLSCarneyJADoppmanJLNiemanLKChrousosGPPapanicolaouDA 1999 Paradoxical response to dexamethasone in the diagnosis of primary pigmented nodular adrenocortical disease. Annals of Internal Medicine 131 585591. (https://doi.org/10.7326/0003-4819-131-8-199910190-00006)

    • Search Google Scholar
    • Export Citation
  • TadjineMLampronAOuadiLHorvathAStratakisCABourdeauI 2008 Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease (PPNAD). Clinical Endocrinology 69 367373. (https://doi.org/10.1111/j.1365-2265.2008.03273.x)

    • Search Google Scholar
    • Export Citation
  • TiroshALodishMBPapadakisGZLyssikatosCBelyavskayaEStratakisCA 2016 Diurnal plasma cortisol measurements utility in differentiating various etiologies of endogenous Cushing syndrome. Hormone and Metabolic Research 48 677681. (https://doi.org/10.1055/s-0042-115644)

    • Search Google Scholar
    • Export Citation
  • VezzosiDLibéRBaudryCRizk-RabinMHorvathALevyIRené-CorailFRagazzonBStratakisCAVandecasteeleG 2012 Phosphodiesterase 11A (PDE11A) gene defects in patients with acth-independent macronodular adrenal hyperplasia (AIMAH): functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. Journal of Clinical Endocrinology and Metabolism 97 E2063E2069. (https://doi.org/10.1210/jc.2012-2275)

    • Search Google Scholar
    • Export Citation