Development of improved SRC-3 inhibitors as breast cancer therapeutic agents

in Endocrine-Related Cancer
Authors:
Li Qin Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Li Qin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8476-3800
,
Jianwei Chen Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Jianwei Chen in
Current site
Google Scholar
PubMed
Close
,
Dong Lu Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Dong Lu in
Current site
Google Scholar
PubMed
Close
,
Prashi Jain Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Prashi Jain in
Current site
Google Scholar
PubMed
Close
,
Yang Yu Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Yang Yu in
Current site
Google Scholar
PubMed
Close
,
David Cardenas Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by David Cardenas in
Current site
Google Scholar
PubMed
Close
,
Xiaohui Peng Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Xiaohui Peng in
Current site
Google Scholar
PubMed
Close
,
Xiaobin Yu Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Xiaobin Yu in
Current site
Google Scholar
PubMed
Close
,
Jianming Xu Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Jianming Xu in
Current site
Google Scholar
PubMed
Close
,
Jin Wang Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Jin Wang in
Current site
Google Scholar
PubMed
Close
,
Bert W O’Malley Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Bert W O’Malley in
Current site
Google Scholar
PubMed
Close
, and
David M Lonard Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by David M Lonard in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to D M Lonard: dlonard@bcm.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Steroid receptor coactivators (SRCs) possess specific and distinct oncogenic roles in the initiation of cancer and in its progression to a more aggressive disease. These coactivators interact with nuclear receptors and other transcription factors to boost transcription of multiple genes, which potentiate cancer cell proliferation, migration, invasion, tumor angiogenesis and epithelial–mesenchymal transition (EMT). Targeting SRCs using small molecule inhibitors (SMIs) is a promising approach to control cancer progression and metastasis. By high-throughput screening analysis, we recently identified SI-2 as a potent SRC SMI. To develop therapeutic agents, SI-10 and SI-12, the SI-2 analogs are synthesized that incorporate the addition of F atoms to the SI-2 chemical structure. As a result, these analogs exhibit a significantly prolonged plasma half-life, minimal toxicity and improved hERG activity. Biological functional analysis showed that SI-10 and SI-12 treatment (5–50 nM) can significantly inhibit viability, migration and invasion of breast cancer cells in vitro and repress the growth of breast cancer PDX organoids. Treatment of mice with 10 mg/kg/day of either SI-10 or SI-12 was sufficient to repress the growth of xenograft tumors derived from MDA-MB-231 and LM2 cells. Furthermore, in spontaneous and experimental metastasis mouse models developed from MDA-MB-231 and LM2 cells, respectively, SI-10 and SI-12 effectively inhibited the progression of breast cancer lung metastasis. These results demonstrate that SI-10 and SI-12 are promising therapeutic agents and are specifically effective in blocking tumor metastasis, a key point in tumor progression to a more lethal state that results in patient mortality in the majority of cases.

 

  • Collapse
  • Expand
  • Agoulnik IU, Vaid A, Bingman WE, Erdeme H, Frolov A, Smith CL, Ayala G, Ittmann MM & Weigel NL 2005 Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Research 65 79597967. (https://doi.org/10.1158/0008-5472.CAN-04-3541)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brower V 2014 Cell cycle inhibitors make progress. Journal of the National Cancer Institute 106 dju221. (https://doi.org/10.1093/jnci/dju221)

  • Chen X, Liu Z & Xu J 2010 The cooperative function of nuclear receptor coactivator 1 (NCOA1) and NCOA3 in placental development and embryo survival. Molecular Endocrinology 24 19171934. (https://doi.org/10.1210/me.2010-0201)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Ambrogio A, Nagaoka K & Richter JD 2013 Translational control of cell growth and malignancy by the CPEBs. Nature Reviews: Cancer 13 283290. (https://doi.org/10.1038/nrc3485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dasgupta S, Putluri N, Long W, Zhang B, Wang J, Kaushik AK, Arnold JM, Bhowmik SK, Stashi E & Brennan CA et al.2015 Coactivator SRC-2’dependent metabolic reprogramming mediates prostate cancer survival and metastasis. Journal of Clinical Investigation 125 11741188. (https://doi.org/10.1172/JCI76029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N, Choi JM, Jung SY, Coarfa C & Westbrook TF et al.2018 Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556 249254. (https://doi.org/10.1038/s41586-018-0018-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duarte AA, Gogola E, Sachs N, Barazas M, Annunziato S, R de Ruiter J, Velds A, Blatter S, Houthuijzen JM & van de Ven M et al.2018 BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nature Methods 15 134140. (https://doi.org/10.1038/nmeth.4535)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fermini B & Fossa AA 2003 The impact of drug-induced QT interval prolongation on drug discovery and development. Nature Reviews: Drug Discovery 2 439447. (https://doi.org/10.1038/nrd1108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fleming FJ, Myers E, Kelly G, Crotty TB, McDermott EW, O’Higgins NJ, Hill ADK & Young LS 2004 Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. Journal of Clinical Pathology 57 10691074. (https://doi.org/10.1136/jcp.2004.016733)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fu J, Qin L, He T, Qin J, Hong J, Wong J, Liao L & Xu J 2011 The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Research 21 275289. (https://doi.org/10.1038/cr.2010.118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han JS & Crowe DL 2010 Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands. BMC Cancer 10 629. (https://doi.org/10.1186/1471-2407-10-629)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kishimoto H, Wang Z, Bhat-Nakshatri P, Chang D, Clarke R & Nakshatri H 2005 The p160 family coactivators regulate breast cancer cell proliferation and invasion through autocrine/paracrine activity of SDF-1α/CXCL12. Carcinogenesis 26 17061715. (https://doi.org/10.1093/carcin/bgi137)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ & O’Malley BW 1999 A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97 1727. (https://doi.org/10.1016/S0092-8674(0080711-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Long W, Yi P, Amazit L, LaMarca HL, Ashcroft F, Kumar R, Mancini MA, Tsai SY, Tsai MJ & O’Malley BW 2010 SRC-3Δ4 mediates the interaction of EGFR with FAK to promote cell migration. Molecular Cell 37 321332. (https://doi.org/10.1016/j.molcel.2010.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McKenna NJ & O’Malley BW 2002 Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108 465474. (https://doi.org/10.1016/S0092-8674(0200641-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Leary B, Finn RS & Turner NC 2016 Treating cancer with selective CDK4/6 inhibitors. Nature Reviews: Clinical Oncology 13 417430. (https://doi.org/10.1038/nrclinonc.2016.26)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ & van de Haar J et al.2019 Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science Translational Medicine 11 eaay2574. (https://doi.org/10.1126/scitranslmed.aay2574)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Otto T & Sicinski P 2017 Cell cycle proteins as promising targets in cancer therapy. Nature Reviews: Cancer 17 93115. (https://doi.org/10.1038/nrc.2016.138)

  • Qin L, Liao L, Redmond A, Young L, Yuan Y, Chen H, O’Malley BW & Xu J 2008 The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Molecular and Cellular Biology 28 59375950. (https://doi.org/10.1128/MCB.00579-08)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qin L, Liu Z, Chen H & Xu J 2009 The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Research 69 38193827. (https://doi.org/10.1158/0008-5472.CAN-08-4389)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qin L, Chen X, Wu Y, Feng Z, He T, Wang L, Liao L & Xu J 2011 Steroid receptor coactivator-1 upregulates integrin α5 expression to promote breast cancer cell adhesion and migration. Cancer Research 71 17421751. (https://doi.org/10.1158/0008-5472.CAN-10-3453)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qin L, Wu YL, Toneff MJ, Li D, Liao L, Gao X, Bane FT, Tien JC, Xu Y & Feng Z et al.2014a NCOA1 directly targets M-CSF1 expression to promote breast cancer metastasis. Cancer Research 74 34773488. (https://doi.org/10.1158/0008-5472.CAN-13-2639)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qin J, Lee HJ, Wu SP, Lin SC, Lanz RB, Creighton CJ, DeMayo FJ, Tsai SY & Tsai MJ 2014b Androgen deprivation-induced NCoA2 promotes metastatic and castration-resistant prostate cancer. Journal of Clinical Investigation 124 50135026. (https://doi.org/10.1172/JCI76412)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qin L, Xu Y, Xu Y, Ma G, Liao L, Wu Y, Li Y, Wang X, Wang X & Jiang J et al.2015 NCOA1 promotes angiogenesis in breast tumors by simultaneously enhancing both HIF1a- and AP-1-mediated VEGFa transcription. Oncotarget 6 2389023904. (https://doi.org/10.18632/oncotarget.4341)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Redmond AM, Bane FT, Stafford AT, Mcllroy M, Dillon MF, Crotty TB, Hill AD & Young LS 2009 Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clinical Cancer Research 15 20982106. (https://doi.org/10.1158/1078-0432.CCR-08-1649)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, Koujak S, Ferrando AA, Malmström P & Memeo L et al.2007 Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. PNAS 104 75647569. (https://doi.org/10.1073/pnas.0702507104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A & Begthel H et al.2018 A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172 373 .e10386.e10. (https://doi.org/10.1016/j.cell.2017.11.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song X, Zhang C, Zhao M, Chen H, Liu X, Chen J, Lonard DM, Qin L, Xu J & Wang X et al.2015 Steroid receptor coactivator-3 (SRC-3/AIB1) as a novel therapeutic target in triple negative breast cancer and its inhibition with a phospho-bufalin prodrug. PLoS ONE 10 e0140011. (https://doi.org/10.1371/journal.pone.0140011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song X, Chen J, Zhao M, Zhang C, Yu Y, Lonard DM, Chow DC, Palzkill T, Xu J & O’Malley BW et al.2016 Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. PNAS 113 49704975. (https://doi.org/10.1073/pnas.1604274113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY & Tsai MJ et al.1997 Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389 194198. (https://doi.org/10.1038/38304)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E & Reva B et al.2010 Integrative genomic profiling of human prostate cancer. Cancer Cell 18 1122. (https://doi.org/10.1016/j.ccr.2010.05.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Torres-Arzayus MI, De Mora JF, Yuan J, Vazquez F, Bronson R, Rue M, Sellers WR & Brown M 2004 High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6 263274. (https://doi.org/10.1016/j.ccr.2004.06.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walsh CA, Bolger JC, Byrne C, Cocchiglia S, Hao Y, Fagan A, Qin L, Cahalin A, McCartan D & McIlroy M et al.2014 Global gene repression by the steroid receptor coactivator SRC-1 promotes oncogenesis. Cancer Research 74 25332544. (https://doi.org/10.1158/0008-5472.CAN-13-2133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang S, Yuan Y, Liao L, Kuang SQ, Tien JC, O’Malley BW & Xu J 2009 Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. PNAS 106 151156. (https://doi.org/10.1073/pnas.0808703105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG & O’Malley BW 2011 Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Molecular Endocrinology 25 20412053. (https://doi.org/10.1210/me.2011-1222)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, Wang J, Qi R, Matzuk AJ, Song X & Madoux F et al.2014 Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Research 74 15061517. (https://doi.org/10.1158/0008-5472.CAN-13-2939)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ware BR & Khetani SR 2017 Engineered liver platforms for different phases of drug development. Trends in Biotechnology 35 172183. (https://doi.org/10.1016/j.tibtech.2016.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weeber F, Ooft SN, Dijkstra KK & Voest EE 2017 Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chemical Biology 24 10921100. (https://doi.org/10.1016/j.chembiol.2017.06.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu J, Wu RC & O’Malley BW 2009 Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nature Reviews: Cancer 9 615630. (https://doi.org/10.1038/nrc2695)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan F, Yu Y, Chow DC, Palzkill T, Madoux F, Hodder P, Chase P, Griffin PR, O’Malley BW & Lonard DM 2014 Identification of verrucarin a as a potent and selective steroid receptor coactivator-3 small molecule inhibitor. PLoS ONE 9 e95243. (https://doi.org/10.1371/journal.pone.0095243)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yi P, Xia W, Wu RC, Lonard DM, Hung MC & O’Malley BW 2013 SRC-3 coactivator regulates cell resistance to cytotoxic stress via TRAF4-mediated p53 destabilization. Genes and Development 27 274287. (https://doi.org/10.1101/gad.203760.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan Y, Qin L, Liu D, Wu RC, Mussi P, Zhou S, Songyang Z & Xu J 2007 Genetic screening reveals an essential role of p27Kip1 in restriction of breast cancer progression. Cancer Research 67 80328042. (https://doi.org/10.1158/0008-5472.CAN-07-0083)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R & Giuliano M et al.2013 A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research 73 48854897. (https://doi.org/10.1158/0008-5472.CAN-12-4081)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou G, Hashimoto Y, Kwak I, Tsai SY & Tsai MJ 2003 Role of the steroid receptor coactivator SRC-3 in cell growth. Molecular and Cellular Biology 23 77427755. (https://doi.org/10.1128/MCB.23.21.7742-7755.2003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou HJ, Yan J, Luo W, Ayala G, Lin SH, Erdem H, Ittmann M, Tsai SY & Tsai MJ 2005 SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Research 65 79767983. (https://doi.org/10.1158/0008-5472.CAN-04-4076)

    • PubMed
    • Search Google Scholar
    • Export Citation