Molecular alterations in Hürthle cell nodules and preoperative cancer risk

in Endocrine-Related Cancer
View More View Less
  • 1 Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennysylvania, USA
  • 2 Department of Pathology, University of Pittsburgh, Pittsburgh, Pennysylvania, USA
  • 3 Division of Endocrine Surgery, University of Pittsburgh, Pittsburgh, Pennysylvania, USA
  • 4 Division of Endocrinology, University of Texas Medical Branch, Galveston, Texas, USA

Correspondence should be addressed to P Manroa: pomanroa@utmb.edu
Restricted access

Hürthle cell carcinoma (HCC) is a distinct type of thyroid cancer genetically characterized by DNA copy number alterations (CNA), typically of genome haploidization type (GH-type). However, whether CNA also occurs in benign Hürthle cell adenomas (HCA) or Hürthle cell hyperplastic nodules (HCHN), and have diagnostic impact in fine-needle aspiration (FNA) samples, remains unknown. To address these questions, we (1) analyzed 26 HCC, 24 HCA, and 8 HCHN tissues for CNA and other mutations using ThyroSeq v3 (TSv3) next-generation sequencing panel, and (2) determined cancer rate in 111 FNA samples with CNA and known surgical outcome. We identified CNA, more often of the GH-type, in 81% of HCC and in 38% HCA, but not in HCHN. Among four HCC with distant metastasis, all had CNA and three TERT mutations. Overall, positive TSv3 results were obtained in 24 (92%) HCC, including all with ATA high risk of recurrence or metastasis. Among 111 FNA cases with CNA, 38 (34%) were malignant and 73 (66%) benign. A significant correlation between cancer rate and nodule size was observed, particularly among cases with GH-type CNA, where every additional centimeter of nodule size increased the malignancy odds by 1.9 (95% CI 1.3–2.7; P = 0.001). In summary, the results of this study demonstrate that CNA characteristic of HCC also occur in HCA, although with lower frequency, and probability of cancer in nodules with CNA increases with nodule size. Detection of CNA, in conjunction with other mutations and nodule size, is helpful in predicting malignancy in thyroid nodules.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 109 109 109
Full Text Views 14 14 14
PDF Downloads 20 20 20
  • Ahmadi S, Stang M, Jiang XS & Sosa JA 2016 Hürthle cell carcinoma: current perspectives. OncoTargets and Therapy 9 6873–6884. (https://doi.org/10.2147/OTT.S119980)

    • Search Google Scholar
    • Export Citation
  • Bhattacharyya N 2003 Survival and prognosis in Hürthle cell carcinoma of the thyroid gland. Archives of Otolaryngology: Head and Neck Surgery 129 207210. (https://doi.org/10.1001/archotol.129.2.207)

    • Search Google Scholar
    • Export Citation
  • Chin PD, Zhu CY, Sajed DP, Fishbein GA, Yeh MW, Leung AM & Livhits MJ 2020 Correlation of ThyroSeq results with surgical histopathology in cytologically indeterminate thyroid nodules. Endocrine Pathology 31 377384. (https://doi.org/10.1007/s12022-020-09641-2)

    • Search Google Scholar
    • Export Citation
  • Cibas ES & Ali SZ 2017 The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 27 13411346. (https://doi.org/10.1089/thy.2017.0500)

    • Search Google Scholar
    • Export Citation
  • Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B & Pacini F Schlumberger M et al. 2009 Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19 11671214. (https://doi.org/10.1089/thy.2009.0110)

    • Search Google Scholar
    • Export Citation
  • Corver WE, Ruano D, Weijers K, Den Hartog WC, Van Nieuwenhuizen MP, de Miranda N, van Eijk R, Middeldorp A, Jordanova ES & Oosting J et al. 2012 Genome haploidisation with chromosome 7 retention in oncocytic follicular thyroid carcinoma. PLoS ONE 7 e38287. (https://doi.org/10.1371/journal.pone.0038287)

    • Search Google Scholar
    • Export Citation
  • Ganly I & McFadden DG 2019 Short Review: Genomic alterations in Hürthle cell carcinoma. Thyroid 29 471479. (https://doi.org/10.1089/thy.2019.0088)

    • Search Google Scholar
    • Export Citation
  • Ganly I, Ricarte Filho J, Eng S, Ghossein R, Morris LG, Liang Y, Socci N, Kannan K, Mo Q & Fagin JA et al. 2013 Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. Journal of Clinical Endocrinology and Metabolism 98 E962E972. (https://doi.org/10.1210/jc.2012-3539)

    • Search Google Scholar
    • Export Citation
  • Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, Seshan V, Nanjangud G, Eng S, Bose P & Kuo F et al. 2018 Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell 34 256 .e5270.e5. (https://doi.org/10.1016/j.ccell.2018.07.002)

    • Search Google Scholar
    • Export Citation
  • Gopal RK, Kübler K, Calvo SE, Polak P, Livitz D, Rosebrock D, Sadow PM, Campbell B, Donovan SE & Amin S 2018 Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hürthle cell carcinoma. Cancer Cell 34 242 .e5255.e5. (https://doi.org/10.1016/j.ccell.2018.06.013)

    • Search Google Scholar
    • Export Citation
  • Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM & Schlumberger M et al. 2016 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26 1133. (https://doi.org/10.1089/thy.2015.0020)

    • Search Google Scholar
    • Export Citation
  • Hundahl SA, Fleming ID, Fremgen AM & Menck HR 1998 A National Cancer Data base report on 53,856 cases of thyroid carcinoma treated in the US, 1985–1995. Cancer 83 26382648. (doi:10.1002/(SICI)1097-0142(19981215)83:12<2638::AID-CNCR31>3.0.CO;2-1)

    • Search Google Scholar
    • Export Citation
  • Kim TH, Lim JA, Ahn HY, Lee EK, Min HS, Won Kim K, Choi YH, Park YJ, Park DJ & Kim KH et al. 2010 Tumor size and age predict the risk of malignancy in Hurthle cell neoplasm of the thyroid and can therefore guide the extent of initial thyroid surgery. Thyroid 20 12291234. (https://doi.org/10.1089/thy.2009.0443)

    • Search Google Scholar
    • Export Citation
  • Kushchayeva Y, Duh QY, Kebebew E, D’Avanzo A & Clark OH 2008 Comparison of clinical characteristics at diagnosis and during follow-up in 118 patients with Hurthle cell or follicular thyroid cancer. American Journal of Surgery 195 457462. (https://doi.org/10.1016/j.amjsurg.2007.06.001)

    • Search Google Scholar
    • Export Citation
  • Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP & Xu B et al. 2016 Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation 126 10521066. (https://doi.org/10.1172/JCI85271)

    • Search Google Scholar
    • Export Citation
  • Liu R & Xing M 2016 Tert promoter mutations in thyroid cancer. Endocrine-Related Cancer 23 R143–R155. (https://doi.org/10.1530/ERC-15-0533)

  • Livhits MJ, Zhu CY, Kuo EJ, Nguyen DT, Kim J, Tseng CH, Leung AM, Rao J, Levin M & Douek ML et al. 2021 Effectiveness of molecular testing techniques for diagnosis of indeterminate thyroid nodules: a randomized clinical trial. JAMA Oncology 7 7077. (https://doi.org/10.1001/jamaoncol.2020.5935)

    • Search Google Scholar
    • Export Citation
  • Lloyd RV, Osamura RY, Klöppel G, Rosai J, Bosman FT, Jaffe ES, Lakhani SR & Ohgaki H 2017 WHO Classification of Tumours of Endocrine Organs. International Agency for Research on Cancer.

    • Search Google Scholar
    • Export Citation
  • Lupo MA, Walts AE, Sistrunk JW, Giordano TJ, Sadow PM, Massoll N, Campbell R, Jackson SA, Toney N & Narick CM et al. 2020 Multiplatform molecular test performance in indeterminate thyroid nodules. Diagnostic Cytopathology 48 12541264. (https://doi.org/10.1002/dc.24564)

    • Search Google Scholar
    • Export Citation
  • Máximo V, Lima J, Prazeres H, Soares P & Sobrinho-Simões M 2016 The biology and the genetics of Hürthle cell tumors of the thyroid. Endocrine-Related Cancer 23 X2X2. (https://doi.org/10.1530/ERC-11-0354a)

    • Search Google Scholar
    • Export Citation
  • Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, Celestino R, Almeida A, Salgado C & Eloy C et al. 2014 Tert promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. Journal of Clinical Endocrinology and Metabolism 99 E754E765. (https://doi.org/10.1210/jc.2013-3734)

    • Search Google Scholar
    • Export Citation
  • Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana‐Santos L, Gooding WE, Yip L, Ferris RL & Nikiforov YE 2018 Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 124 16821690. (https://doi.org/10.1002/cncr.31245)

    • Search Google Scholar
    • Export Citation
  • Ohori NP, Landau MS, Carty SE, Yip L, LeBeau SO, Manroa P, Seethala RR, Schoedel KE, Nikiforova MN & Nikiforov YE 2019 Benign call rate and molecular test result distribution of ThyroSeq v3. Cancer Cytopathology 127 161168. (https://doi.org/10.1002/cncy.22088)

    • Search Google Scholar
    • Export Citation
  • Panebianco F, Nikitski AV, Nikiforova MN & Nikiforov YE 2019 Spectrum of tert promoter mutations and mechanisms of activation in thyroid cancer. Cancer Medicine 8 58315839. (https://doi.org/10.1002/cam4.2467)

    • Search Google Scholar
    • Export Citation
  • Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, Ghossein RA, Harrell RM, Huang J & Kennedy GC et al. 2018 Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surgery 153 817824. (https://doi.org/10.1001/jamasurg.2018.1153)

    • Search Google Scholar
    • Export Citation
  • Pearce TM, Nikiforova MN & Roy S 2019 Interactive browser-based genomics data visualization tools for translational and clinical laboratory applications. Journal of Molecular Diagnostics 21 985993.

    • Search Google Scholar
    • Export Citation
  • Sippel RS, Elaraj DM, Khanafshar E, Zarnegar R, Kebebew E, Duh QY & Clark OH 2008 Tumor size predicts malignant potential in Hurthle cell neoplasms of the thyroid. World Journal of Surgery 32 702707. (https://doi.org/10.1007/s00268-007-9416-5)

    • Search Google Scholar
    • Export Citation
  • Song YS, Lim JA, Choi H, Won JK, Moon JH, Cho SW, Lee KE, Park YJ, Yi KH & Park DJ et al. 2016 Prognostic effects of tert promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer 122 13701379. (https://doi.org/10.1002/cncr.29934)

    • Search Google Scholar
    • Export Citation
  • Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, Figge JJ, Mandel S, Haugen BR & Burman KD et al. 2019 Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncology 5 204212. (https://doi.org/10.1001/jamaoncol.2018.4616)

    • Search Google Scholar
    • Export Citation
  • Stojadinovic A, Hoos A, Ghossein RA, Urist MJ, Leung DH, Spiro RH, Shah JP, Brennan MF, Singh B & Shaha AR 2002 Hürthle cell carcinoma: a 60-year experience. Annals of Surgical Oncology 9 197203. (https://doi.org/10.1007/BF02557374)

    • Search Google Scholar
    • Export Citation
  • Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, Cronan JJ, Beland MD, Desser TS & Frates MC et al. 2017 ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. Journal of the American College of Radiology 14 587595. (https://doi.org/10.1016/j.jacr.2017.01.046)

    • Search Google Scholar
    • Export Citation
  • VandenBussche CJ, Adams C, Ali SZ & Olson MT 2015 Cytotechnologist performance for screening Hürthle cell atypia in indeterminate thyroid fine-needle aspirates. Acta cytologica 59 377383. (https://doi.org/10.1159/000441939)

    • Search Google Scholar
    • Export Citation
  • Wei S, LiVolsi VA, Montone KT, Morrissette JJ & Baloch ZW 2015 PTEN and TP53 mutations in oncocytic follicular carcinoma. Endocrine Pathology 26 365369. (https://doi.org/10.1007/s12022-015-9403-6)

    • Search Google Scholar
    • Export Citation
  • Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, Pai S & Bishop J 2014 BRAF V600E and tert promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. Journal of Clinical Oncology 32 27182726. (https://doi.org/10.1200/JCO.2014.55.5094)

    • Search Google Scholar
    • Export Citation
  • Zhang YW, Greenblatt DY, Repplinger D, Bargren A, Adler JT, Sippel RS & Chen H 2008 Older age and larger tumor size predict malignancy in hurthle cell neoplasms of the thyroid. Annals of Surgical Oncology 15 28422846. (https://doi.org/10.1245/s10434-008-0079-8)

    • Search Google Scholar
    • Export Citation