Hypothyroidism induces oxidative stress and DNA damage in breast

in Endocrine-Related Cancer
View More View Less
  • 1 Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • 2 Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • 3 NUMPEX, Duque de Caxias Campus, Universidade Federal do Rio de Janeiro, Brazil

Correspondence should be addressed to R S Fortunato: rsfortunato@yahoo.com.br
Restricted access

Breast cancer and thyroid dysfunctions have been associated for decades. Although many studies suggest a biological correlation, the mechanisms linking these two pathologies have not been elucidated. Reactive oxygen species (ROS) can oxidize lipids, proteins, and DNA molecules and may promote tumor initiation. Hence, we aimed at evaluating the mammary redox balance and genomic instability in a model of experimental hypothyroidism. Female Wistar rats were treated with 0.03% methimazole for 7 or 21 days to evaluate ROS generation, antioxidant enzyme activities, and oxidative stress biomarkers, as well as genomic instability. After 7 days, lower catalase, GPX, and DUOX activities were detected in the breast of hypothyroid group compared to the control while the levels of 4-hydroxynonenal (HNE) were higher. In addition, hypothyroid group showed an increase in γH2Ax/H2Ax ratio. Twenty-one days hypothyroid group had increased catalase and SOD activities, without significant differences between groups in the levels of oxidative stress biomarkers and DNA damage. TSH-treated MCF10A cells showed a higher extracellular, intracellular, and mitochondrial ROS production. Additionally, greater DNA damage was observed in these cells, demonstrated by a higher comet tail DNA percentage and increased 53BP1 foci. Finally, we found that TSH treatment was not able to alter cell viability. The Genome Cancer Atlas (TGCA) data showed that high TSHR expression is associated with more invasive breast cancer types. In conclusion, we demonstrate that oxidative stress and DNA damage in breast are early events of experimental hypothyroidism. Moreover, high TSH levels induce oxidative stress and genomic instability in mammary cells.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 383 383 340
Full Text Views 22 22 20
PDF Downloads 26 26 24
  • Aebi H 1984 Catalase in vitro. Methods in Enzymology 105 121126. (https://doi.org/10.1016/s0076-6879(8405016-3)

  • Andrade-Lima LC, Andrade LN & Menck CF 2015 519 UVB irradiation by controlling both translesion synthesis and alternative tolerance pathways. Journal of Cell Science 128 150159. (https://doi.org/10.1242/jcs.161596)

    • Search Google Scholar
    • Export Citation
  • Bernstein L & Ross RK 1993 Endogenous hormones and breast cancer risk. Epidemiologic Reviews 15 4865. (https://doi.org/10.1093/OXFORDJOURNALS.EPIREV.A036116)

    • Search Google Scholar
    • Export Citation
  • Block K & Gorin Y 2012 Aiding and abetting roles of NOX oxidases in cellular transformation. Nature Reviews: Cancer 12 627637. (https://doi.org/10.1038/nrc3339)

    • Search Google Scholar
    • Export Citation
  • Bradford MM 1976 A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 248254. (https://doi.org/10.1016/j.cj.2017.04.003)

    • Search Google Scholar
    • Export Citation
  • Crapo JD, Delong DM, Sjostrom K, Hasler GR & Drew RT 1977 The failure of aerosolized superoxide dismutase to modify pulmonary oxygen Toxicityl-3. American Review of Respiratory Disease 115 10271033. (https://doi.org/10.1164/arrd.1977.115.6.1027)

    • Search Google Scholar
    • Export Citation
  • Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM & Dunning MJ 2012 The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486 346352. (https://doi.org/10.1038/nature10983)

    • Search Google Scholar
    • Export Citation
  • Dardano A, Ghiadoni L, Plantinga Y, Caraccio N, Bemi A, Duranti E, Taddei S, Ferrannini E, Salvetti A & Monzani F 2006 Recombinant human thyrotropin reduces endothelium-dependent vasodilation in patients monitored for differentiated thyroid carcinoma. Journal of Clinical Endocrinology and Metabolism 91 41754178. (https://doi.org/10.1210/jc.2006-0440)

    • Search Google Scholar
    • Export Citation
  • DeVita VT, Rosenber SA & Lawrence TS 2015. Devita, Hellman and Rosenberg’s Cancer - Principles and Practice of Oncology. Philadelphia, PA, USA: Wolters Kluwer/Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • Dias K, Dvorkin-Gheva A, Hallett RM, Wu Y, Hassell J, Pond GR, Levine M, Whelan T & Bane AL 2017 Claudin-low breast cancer; clinical & pathological characteristics. PLoS ONE 12 e0168669. (https://doi.org/10.1371/journal.pone.0168669)

    • Search Google Scholar
    • Export Citation
  • Dinda S, Sanchez A & Moudgil V 2002 Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and retinoblastoma, in breast cancer cells. Oncogene 21 761768. (https://doi.org/10.1038/sj.onc.1205136)

    • Search Google Scholar
    • Export Citation
  • Ellman GL 1959 Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82 7077. (https://doi.org/10.1016/0003-9861(5990090-6)

    • Search Google Scholar
    • Export Citation
  • ESHRE Capri Workshop Group, Collins J, Crosignani PG, Diczfalusy E, Heinemann LAJ, La Vecchia C, Reeves G, Smith IE, Trichopoulos D & Arisi E 2004 Hormones and breast cancer. Human Reproduction Update 10 281293. (https://doi.org/10.1093/humupd/dmh025)

    • Search Google Scholar
    • Export Citation
  • Fang Y, Yao L, Sun J, Yang R, Chen Y, Tian J, Yang K & Tian L 2017 Does thyroid dysfunction increase the risk of breast cancer? A systematic review and meta- analysis. Journal of Endocrinological Investigation 40 10351047. (https://doi.org/10.1007/s40618-017-0679-x)

    • Search Google Scholar
    • Export Citation
  • Ferreira AC, de Carvalho Cardoso L, Rosenthal D & de Carvalho DP 2003 Thyroid Ca2+/NADPH-dependent H2O2 generation is partially inhibited by propylthiouracil and methimazole. European Journal of Biochemistry 270 23632368. (https://doi.org/10.1046/j.1432-1033.2003.03576.x)

    • Search Google Scholar
    • Export Citation
  • Ferreira AC, Lima LP, Araújo RL, Müller G, Rocha RP, Rosenthal D & Carvalho DP 2005 Rapid regulation of thyroid sodium-iodide symporter activity by thyrotrophin and iodine. Journal of Endocrinology 184 6976. (https://doi.org/10.1677/joe.1.05643)

    • Search Google Scholar
    • Export Citation
  • Flohé L & Günzler WA 1984 Assays of glutathione peroxidase. Methods in Enzymology 105 114121. (https://doi.org/10.1016/s0076-6879(8405015-1)

    • Search Google Scholar
    • Export Citation
  • Fortunato RS, De Souza ECL, Ameziane-el Hassani R, Boufraqech M, Weyemi U, Talbot M, Lagente-Chevallier O, De Carvalho DP, Bidart JM, Schlumberger M, et al. 2010 Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. Journal of Clinical Endocrinology and Metabolism 95 54035411. (https://doi.org/10.1210/jc.2010-1085)

    • Search Google Scholar
    • Export Citation
  • Fortunato RS, Gomes LR, Munford V, Pessoa CF, Quinet A, Hecht F, Kajitani GS, Milito CB, Carvalho DP & Menck CFM 2018 DUOX1 silencing in mammary cell alters the response to genotoxic stress. Oxidative Medicine and Cellular Longevity 2018 19. (https://doi.org/10.1155/2018/3570526)

    • Search Google Scholar
    • Export Citation
  • Franco A, Jolly L, Russell S, Goldstein L & DeHart J 2016 Abstract P5-06-01: The role of thyroid hormones in breast tumorigenesis: A translational study utilizing mouse models. Cell culture and patient d ata. Cancer Research 76 (Supplement 4) P5-06-01. (https://doi.org/10.1158/1538-7445.SABCS15-P5-06-01)

    • Search Google Scholar
    • Export Citation
  • Gagnon A, Langille ML, Chaker S, Antunes TT, Durand J & Sorisky A 2014 TSH signaling pathways that regulate MCP-1 in human differentiated adipocytes. Metabolism: Clinical and Experimental 63 812821. (https://doi.org/10.1016/j.metabol.2014.02.015)

    • Search Google Scholar
    • Export Citation
  • García-Jiménez C & Santisteban P 2007 TSH signalling and cancer. Arquivos Brasileiros de Endocrinologia e Metabologia 51 654671. (https://doi.org/10.1590/s0004-27302007000500003)

    • Search Google Scholar
    • Export Citation
  • Govindaraj V, Yaduvanshi NS, Krishnamachar H & Rao AJ 2012 Expression of thyroid-stimulating hormone receptor, octamer-binding transcription factor 4, and intracisternal A particle-promoted polypeptide in human breast cancer tissues. Hormone Molecular Biology and Clinical Investigation 9 173178. (https://doi.org/10.1515/hmbci-2011-0130)

    • Search Google Scholar
    • Export Citation
  • Hardefeldt PJ, Eslick GD & Edirimanne S 2012 Benign thyroid disease is associated with breast cancer: a meta-analysis. Breast Cancer Research and Treatment 133 11691177. (https://doi.org/10.1007/s10549-012-2019-3)

    • Search Google Scholar
    • Export Citation
  • Hecht F, Pessoa CF, Gentile LB, Rosenthal D, Carvalho DP & Fortunato RS 2016 The role of oxidative stress on breast cancer development and therapy. Tumour Biology 37 42814291. (https://doi.org/10.1007/s13277-016-4873-9)

    • Search Google Scholar
    • Export Citation
  • Hedley AJ, Spiegelhalter DJ, Jones SJ & Clements P 1981 Thyroid disease and breast cancer. Lancet 1 558. (https://doi.org/10.1016/s0140-6736(8192890-7)

    • Search Google Scholar
    • Export Citation
  • Huang CH, Wei JC, Chien TC, Kuo CW, Lin SH, Su YC, Hsu CY, Chiou JY & Yeh MH 2021 Risk of breast cancer in females with hypothyroidism: A nationwide, population-based, cohort study. Endocrine Practice 27 298305. (https://doi.org/10.1016/j.eprac.2020.09.007)

    • Search Google Scholar
    • Export Citation
  • INCA 2019 Tipos de câncer. Rio de Janeiro: Instituto Nacional de Câncer José Alencar Gomes da Silva. (available at: https://www.inca.gov.br/tipos-de-cancer)

    • Search Google Scholar
    • Export Citation
  • Itoh K & Maruchi N 1975 Breast Cancer in patients with Hashimoto’s thyroiditis. Lancet 306 11191121. (https://doi.org/10.1016/S0140-6736(7591006-5)

    • Search Google Scholar
    • Export Citation
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E & Forman D 2011 Global cancer statistics. CA: A Cancer Journal for Clinicians 61 6990. (https://doi.org/10.3322/caac.20107)

    • Search Google Scholar
    • Export Citation
  • Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, Petros JA & Arnold RS 2005 Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62 200207. (https://doi.org/10.1002/pros.20137)

    • Search Google Scholar
    • Export Citation
  • Ling Q, Shi W, Huang C, Zheng J, Cheng Q, Yu K, Chen S, Zhang H, Li N & Chen M 2014 Epigenetic silencing of dual oxidase 1 by promoter hypermethylation in human hepatocellular carcinoma. American Journal of Cancer Research 4 508–517.

    • Search Google Scholar
    • Export Citation
  • López-Fontana CM, Sasso CV, Maselli ME, Santiano FE, Semino SN, Carrión FDC, Jahn GA & Carón RW 2013 Experimental hypothyroidism increases apoptosis in dimethylbenzanthracene- induced mammary tumors. Oncology Reports 30 16511660. (https://doi.org/10.3892/or.2013.2648)

    • Search Google Scholar
    • Export Citation
  • Luxen S, Belinsky SA & Knaus UG 2008 Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Research 68 10371045. (https://doi.org/10.1158/0008-5472.CAN-07-5782)

    • Search Google Scholar
    • Export Citation
  • Majima HJ, Nakanishi-ueda T & Ozawa T 2002 4-Hydroxy-2-nonenal (4-HNE) staining by anti-HNE antibody. Methods in Molecular Biology 196 3134. (https://doi.org/10.1385/1-59259-274-0:31)

    • Search Google Scholar
    • Export Citation
  • Martínez-Iglesias O, García-Silva S, Regadera J & Aranda A 2009 Hypothyroidism enhances tumor invasiveness and metastasis development. PLoS ONE 4 e6428. (https://doi.org/10.1371/journal.pone.0006428)

    • Search Google Scholar
    • Export Citation
  • Maruchi N, Annegers JF & Kurland LT 1976 Hashimoto’s thyroiditis and breast cancer. Mayo Clinic Proceedings 51 263265.

  • Milas M, Barbosa GF, Mitchell J, Berber E, Siperstein A & Gupta M 2009 Effectiveness of peripheral thyrotropin receptor mRNA in follow-up of differentiated thyroid cancer. Annals of Surgical Oncology 16 473480. (https://doi.org/10.1245/s10434-008-0211-9)

    • Search Google Scholar
    • Export Citation
  • Moeller LC & Führer D 2013 Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective. Endocrine-Related Cancer 20 R19R29. (https://doi.org/10.1530/ERC-12-0219)

    • Search Google Scholar
    • Export Citation
  • Morshed SA, Ando T, Latif R & Davies TF 2010 Neutral antibodies to the TSH receptor are present in Graves’ disease and regulate selective signaling cascades. Endocrinology 151 55375549. (https://doi.org/10.1210/en.2010-0424)

    • Search Google Scholar
    • Export Citation
  • Morshed SA, Ma R, Latif R & Davies TF 2013 How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis. Journal of Autoimmunity 47 1724. (https://doi.org/10.1016/j.jaut.2013.07.009)

    • Search Google Scholar
    • Export Citation
  • Oh HJ, Chung JK, Kang JH, Kang WJ, Noh DY, Park IA, Jeong JM, Lee DS & Lee MC 2005 The relationship between expression of the sodium/iodide symporter gene and the status of hormonal receptors in human breast cancer tissue. Cancer Research and Treatment 37 247250. (https://doi.org/10.4143/crt.2005.37.4.247)

    • Search Google Scholar
    • Export Citation
  • Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E & Bardwell HA 2016 The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Communications 7 11479. (https://doi.org/10.1038/ncomms11479)

    • Search Google Scholar
    • Export Citation
  • Perou CM 2010 Molecular stratification of triple-negative breast cancers. Oncologist 15 3948. (https://doi.org/10.1634/theoncologist.2010-S5-39)

    • Search Google Scholar
    • Export Citation
  • Perry M, Goldie DJ & Self M 1978 Thyroid function in patients with breast cancer. Annals of the Royal College of Surgeons of England 60 290293.

    • Search Google Scholar
    • Export Citation
  • Pinto M, Soares P & Ribatti D 2011 Thyroid hormone as a regulator of tumor induced angiogenesis. Cancer Letters 301 119126. (https://doi.org/10.1016/j.canlet.2010.11.011)

    • Search Google Scholar
    • Export Citation
  • Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X & Perou CM 2010 Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research 12 R68. (https://doi.org/10.1186/bcr2635)

    • Search Google Scholar
    • Export Citation
  • Prat A & Perou CM 2011 Deconstructing the molecular portraits of breast cancer. Molecular Oncology 5 523. (https://doi.org/10.1016/j.molonc.2010.11.003).

    • Search Google Scholar
    • Export Citation
  • Prinzi N, Baldini E, Sorrenti S, De Vito C, Tuccilli C, Catania A, Carbotta S, Mocini R, Coccaro C, Nesca A, et al. 2014 Prevalence of breast cancer in thyroid diseases: results of a cross-sectional study of 3,921 patients. Breast Cancer Research and Treatment 144 683688. (https://doi.org/10.1007/s10549-014-2893-y).

    • Search Google Scholar
    • Export Citation
  • Roy K, Wu Y, Meitzler JL, Juhasz A, Liu H, Jiang G, Lu J, Antony S & Doroshow JH 2015 NADPH oxidases and cancer. Clinical Science 128 863875. (https://doi.org/10.1042/CS20140542)

    • Search Google Scholar
    • Export Citation
  • Sarlis NJ, Gourgiotis L, Pucino F & Tolis GJ 2002 Lack of association between Hashimoto thyroiditis and breast cancer : A quantitative research synthesis. Hormones 1 3541. (https://doi.org/10.14310/horm.2002.1152)

    • Search Google Scholar
    • Export Citation
  • Schmittgen TD & Livak KJ 2008 Analyzing real-time PCR data by the comparative C T method. Nature Protocols 3 11011108. (https://doi.org/10.1038/nprot.2008.73)

    • Search Google Scholar
    • Export Citation
  • Siegel RL, Miller KD & Jemal A 2016 Cancer statistics, 2016. CA: A Cancer Journal for Clinicians 66 730. (https://doi.org/10.3322/caac.21332)

  • Simon MS, Tang MT, Bernstein L, Norman SA, Weiss L, Burkman RT, Daling JR, Deapen D, Folger SG, Malone K, et al. 2002 Do thyroid disorders increase the risk of breast cancer ? 1. Cancer Epidemiology, Biomarkers and Prevention 11 15741578.

    • Search Google Scholar
    • Export Citation
  • Sterle HA, Hildebrandt X, Valenzuela Álvarez M, Paulazo MA, Gutierrez LM, Klecha AJ, Cayrol F, Díaz Flaqué MC, Rosemblit C, Barreiro Arcos ML, et al. 2021 Thyroid status regulates tumor microenvironment delineating breast cancer fate. Endocrine-Related Cancer 28 403416. (https://doi.org/10.1530/ERC-20-0277)

    • Search Google Scholar
    • Export Citation
  • Strober W 2015 Trypan blue exclusion test of cell viability. Current Protocols in Immunology 111 A3B1A3B 3. (https://doi.org/10.1002/0471142735.ima03bs111)

    • Search Google Scholar
    • Export Citation
  • Sulli G, Di Micco R & d’Adda di Fagagna F 2012 Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nature Reviews: Cancer 12 709720. (https://doi.org/10.1038/nrc3344)

    • Search Google Scholar
    • Export Citation
  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC & Sasaki YF 2000 Single cell gel/comet assay : guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis 35 206221. (https://doi.org/10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j)

    • Search Google Scholar
    • Export Citation
  • Turken O, NarIn Y, DemIrbas S, Onde ME, Sayan O, KandemIr EG, YaylacI M & Ozturk A 2003 Breast cancer in association with thyroid disorders. Breast Cancer Research 5 R110–R113. (https://doi.org/10.1186/bcr609)

    • Search Google Scholar
    • Export Citation
  • Weyemi U, Caillou B, Talbot M, Ameziane-El-Hassani R, Lacroix L, Lagent-Chevallier O, Al Ghuzlan A, Roos D, Bidart JM, Virion A, et al. 2010 Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocrine-Related Cancer 17 2737. (https://doi.org/10.1677/ERC-09-0175)

    • Search Google Scholar
    • Export Citation
  • Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, Talbot M, Dardalhon M, Al Ghuzlan A, Bidart JM, et al. 2012 ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31 11171129. (https://doi.org/10.1038/onc.2011.327)

    • Search Google Scholar
    • Export Citation
  • WHO 2017 World Health Organization Fact Sheets. International Agency for Research on Cancer. (available at: https://www.who.int/news-room/fact-sheets/detail/cancer

    • Search Google Scholar
    • Export Citation
  • Winterbourn CC & Hampton MB 2008 Thiol chemistry and specificity in redox signaling. Free Radical Biology and Medicine 45 549561. (https://doi.org/10.1016/j.freeradbiomed.2008.05.004)

    • Search Google Scholar
    • Export Citation