Exploratory genomic analysis of high-grade neuroendocrine neoplasms across diverse primary sites

in Endocrine-Related Cancer
Authors:
Thomas Yang SunDivision of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA

Search for other papers by Thomas Yang Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7436-0138
,
Lan ZhaoDivision of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA

Search for other papers by Lan Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2681-7695
,
Paul Van HummelenDivision of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA

Search for other papers by Paul Van Hummelen in
Current site
Google Scholar
PubMed
Close
,
Brock MartinDepartment of Pathology, Stanford University School of Medicine, Stanford, California, USA

Search for other papers by Brock Martin in
Current site
Google Scholar
PubMed
Close
,
Kathleen HornbackerClinical Trials Office, Stanford University, Stanford, California, USA

Search for other papers by Kathleen Hornbacker in
Current site
Google Scholar
PubMed
Close
,
HoJoon LeeDivision of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA

Search for other papers by HoJoon Lee in
Current site
Google Scholar
PubMed
Close
,
Li C XiaDivision of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
Division of Biostatistics, Department of Epidemiology and Public Health, Albert Einstein College of Medicine, Bronx, New York, USA

Search for other papers by Li C Xia in
Current site
Google Scholar
PubMed
Close
,
Sukhmani K PaddaCedars-Sinai Medical Center, Department of Medical Oncology, Los Angeles, California, USA

Search for other papers by Sukhmani K Padda in
Current site
Google Scholar
PubMed
Close
,
Hanlee P JiDivision of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
Stanford Genome Technology Center, Stanford, California, USA

Search for other papers by Hanlee P Ji in
Current site
Google Scholar
PubMed
Close
, and
Pamela KunzYale School of Medicine, Smilow Cancer Hospital, Yale Cancer Center, New Haven, Connecticut, USA

Search for other papers by Pamela Kunz in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1613-3919
View More View Less

Correspondence should be addressed to P Kunz: pamela.kunz@yale.edu
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

High-grade (grade 3) neuroendocrine neoplasms (G3 NENs) have poor survival outcomes. From a clinical standpoint, G3 NENs are usually grouped regardless of primary site and treated similarly. Little is known regarding the underlying genomics of these rare tumors, especially when compared across different primary sites. We performed whole transcriptome (n  = 46), whole exome (n  = 40), and gene copy number (n  = 43) sequencing on G3 NEN formalin-fixed, paraffin-embedded samples from diverse organs (in total, 17 were lung, 16 were gastroenteropancreatic, and 13 other). G3 NENs despite arising from diverse primary sites did not have gene expression profiles that were easily segregated by organ of origin. Across all G3 NENs, TP53, APC, RB1, and CDKN2A were significantly mutated. The CDK4/6 cell cycling pathway was mutated in 95% of cases, with upregulation of oncogenes within this pathway. G3 NENs had high tumor mutation burden (mean 7.09 mutations/MB), with 20% having >10 mutations/MB. Two somatic copy number alterations were significantly associated with worse prognosis across tissue types: focal deletion 22q13.31 (HR, 7.82; P = 0.034) and arm amplification 19q (HR, 4.82; P = 0.032). This study is among the most diverse genomic study of high-grade neuroendocrine neoplasms. We uncovered genomic features previously unrecognized for this rapidly fatal and rare cancer type that could have potential prognostic and therapeutic implications.

 

  • Collapse
  • Expand
  • Ahn DH, Ozer HG, Hancioglu B, Lesinski GB, Timmers C & Bekaii-Saab T 2016 Whole-exome tumor sequencing study in biliary cancer patients with a response to MEK inhibitors. Oncotarget 7 53065312. (https://doi.org/10.18632/oncotarget.6632)

    • Search Google Scholar
    • Export Citation
  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A & Borresen-Dale AL et al.2013 Signatures of mutational processes in human cancer. Nature 500 415421. (https://doi.org/10.1038/nature12477)

    • Search Google Scholar
    • Export Citation
  • Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, Totoki Y, Fujimoto A, Nakagawa H & Shibata T et al.2016 Mutational signatures associated with tobacco smoking in human cancer. Science 354 618622. (https://doi.org/10.1126/science.aag0299)

    • Search Google Scholar
    • Export Citation
  • Anders S & Huber W 2010 Differential expression analysis for sequence count data. Genome Biology 11 R106. (https://doi.org/10.1186/gb-2010-11-10-r106)

    • Search Google Scholar
    • Export Citation
  • Andor N, Harness JV, Müller S, Mewes HW & Petritsch C 2014 EXPANDS: expanding ploidy and allele frequency on nested subpopulations. Bioinformatics 30 5060. (https://doi.org/10.1093/bioinformatics/btt622)

    • Search Google Scholar
    • Export Citation
  • Aristizabal Prada ET, Nolting S, Spoettl G, Maurer J & Auernhammer CJ 2018 The novel cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) alone and in dual-targeting approaches demonstrates antitumoral efficacy in neuroendocrine tumors in vitro. Neuroendocrinology 106 5873. (https://doi.org/10.1159/000463386)

    • Search Google Scholar
    • Export Citation
  • Assi HA & Padda SK 2020 Latest advances in management of small cell lung cancer and other neuroendocrine tumors of the lung. Cancer Treatment and Research Communications 23 100167. (https://doi.org/10.1016/j.ctarc.2020.100167)

    • Search Google Scholar
    • Export Citation
  • Astolfi A, Urbini M, Indio V, Nannini M, Genovese C, Santini D, Saponara M, Mandrioli A, Ercolani G & Brandi G et al.2015 Whole exome sequencing (WES) on formalin-fixed, paraffin-embedded (FFPE) tumor tissue in gastrointestinal stromal tumors (GIST). BMC Genomics 16 892. (https://doi.org/10.1186/s12864-015-1982-6)

    • Search Google Scholar
    • Export Citation
  • Balanis NG, Sheu KM, Esedebe FN, Patel SJ, Smith BA, Park JW, Alhani S, Gomperts BN, Huang J & Witte ON et al.2019 Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell 36 17 .e734.e7. (https://doi.org/10.1016/j.ccell.2019.06.005)

    • Search Google Scholar
    • Export Citation
  • Baugh EH, Ke H, Levine AJ, Bonneau RA & Chan CS 2018 Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death and Differentiation 25 154160. (https://doi.org/10.1038/cdd.2017.180)

    • Search Google Scholar
    • Export Citation
  • Bertonha FB, Barros Filho Mde Mde C, Kuasne H, Dos Reis PP, da Costa Prando E, Munoz JJ, Roffe M, Hajj GN, Kowalski LP & Rainho CA et al.2015 PHF21B as a candidate tumor suppressor gene in head and neck squamous cell carcinomas. Molecular Oncology 9 450462. (https://doi.org/10.1016/j.molonc.2014.09.009)

    • Search Google Scholar
    • Export Citation
  • Boons G, Vandamme T, Mariën L, Lybaert W, Roeyen G, Rondou T, Papadimitriou K, Janssens K, Op de Beeck B & Simoens M et al.2022 Longitudinal copy-number alteration analysis in plasma cell-free DNA of neuroendocrine neoplasms is a novel specific biomarker for diagnosis, prognosis, and follow-up. Clinical Cancer Research 28 338349. (https://doi.org/10.1158/1078-0432.CCR-21-2291)

    • Search Google Scholar
    • Export Citation
  • Busico A, Maisonneuve P, Prinzi N, Pusceddu S, Centonze G, Garzone G, Pelligrinelli A, Giacomelli L, Mangogna A & Paolino C et al.2019 Gastroenteropancreatic high-grade neuroendocrine neoplasms (H-NENs): histology and molecular analysis, two sides of the same coin. Neuroendocrinology 110 616629. (https://doi.org/10.1159/000503722)

    • Search Google Scholar
    • Export Citation
  • Carrick DM, Mehaffey MG, Sachs MC, Altekruse S, Camalier C, Chuaqui R, Cozen W, Das B, Hernandez BY & Lih CJ et al.2015 Robustness of next generation sequencing on older formalin-fixed paraffin-embedded tissue. PLoS ONE 10 e0127353. (https://doi.org/10.1371/journal.pone.0127353)

    • Search Google Scholar
    • Export Citation
  • Chen S, Zhou Y, Chen Y & Gu J 2018 Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34 i884i890. (https://doi.org/10.1093/bioinformatics/bty560)

    • Search Google Scholar
    • Export Citation
  • Chen L, Liu M, Zhang Y, Guo Y, Chen MH & Chen J 2021 Genetic characteristics of colorectal neuroendocrine carcinoma: more similar to colorectal adenocarcinoma. Clinical Colorectal Cancer 20 177 .e13185.e13. (https://doi.org/10.1016/j.clcc.2020.09.001)

    • Search Google Scholar
    • Export Citation
  • Choi YJ & Anders L 2014 Signaling through cyclin D-dependent kinases. Oncogene 33 18901903. (https://doi.org/10.1038/onc.2013.137)

  • Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T & Yao JC 2017 Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncology 3 13351342. (https://doi.org/10.1001/jamaoncol.2017.0589)

    • Search Google Scholar
    • Export Citation
  • Dasari A, Mehta K, Byers LA, Sorbye H & Yao JC 2018 Comparative study of lung and extrapulmonary poorly differentiated neuroendocrine carcinomas: a SEER database analysis of 162,983 cases. Cancer 124 807815. (https://doi.org/10.1002/cncr.31124)

    • Search Google Scholar
    • Export Citation
  • Diossy M, Sztupinszki Z, Krzystanek M, Borcsok J, Eklund AC, Csabai I, Pedersen AG & Szallasi Z 2019 Strand orientation bias detector to determine the probability of FFPE sequencing artifacts. Briefings in Bioinformatics 22 bbab186. (https://doi.org/10.1093/bib/bbab186)

    • Search Google Scholar
    • Export Citation
  • Do H & Dobrovic A 2015 Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clinical Chemistry 61 6471. (https://doi.org/10.1373/clinchem.2014.223040)

    • Search Google Scholar
    • Export Citation
  • Du Q, Guo X, Wang M, Li Y, Sun X & Li Q 2020 The application and prospect of CDK4/6 inhibitors in malignant solid tumors. Journal of Hematology and Oncology 13 41. (https://doi.org/10.1186/s13045-020-00880-8)

    • Search Google Scholar
    • Export Citation
  • Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotti KE & McLellan M et al.2018 Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Systems 6 271281.e7. (https://doi.org/10.1016/j.cels.2018.03.002)

    • Search Google Scholar
    • Export Citation
  • FDA 2020 FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors. Silver Spring, MD, USA: FDA. (available at: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors)

    • Search Google Scholar
    • Export Citation
  • Felicio PS, Bidinotto LT, Melendez ME, Grasel RS, Campacci N, Galvao HCR, Scapulatempo-Neto C, Dufloth RM, Evangelista AF & Palmero EI 2018 Genetic alterations detected by comparative genomic hybridization in BRCAX breast and ovarian cancers of Brazilian population. Oncotarget 9 2752527534. (https://doi.org/10.18632/oncotarget.25537)

    • Search Google Scholar
    • Export Citation
  • Fernandez-Cuesta L, Peifer M, Lu X, Sun R, Ozretic L, Seidal D, Zander T, Leenders F, George J & Muller C et al.2014 Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nature Communications 5 3518. (https://doi.org/10.1038/ncomms4518)

    • Search Google Scholar
    • Export Citation
  • Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM & An P et al.2013 Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nature Biotechnology 31 10231031. (https://doi.org/10.1038/nbt.2696)

    • Search Google Scholar
    • Export Citation
  • Furlan D, Sahnane N, Mazzoni M, Pastorino R, Carnevali I, Stefanoli M, Ferretti A, Chiaravalli AM, La Rosa S & Capella C 2013 Diagnostic utility of MS-MLPA in DNA methylation profiling of adenocarcinomas and neuroendocrine carcinomas of the colon-rectum. Virchows Archiv 462 4756. (https://doi.org/10.1007/s00428-012-1348-2)

    • Search Google Scholar
    • Export Citation
  • George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L & Bosco G et al.2015 Comprehensive genomic profiles of small cell lung cancer. Nature 524 4753. (https://doi.org/10.1038/nature14664)

    • Search Google Scholar
    • Export Citation
  • George J, Walter V, Peifer M, Alexandrov LB, Seidel D, Leenders F, Maas L, Müller C, Dahmen I & Delhomme TM et al.2018 Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nature Communications 9 1048. (https://doi.org/10.1038/s41467-018-03099-x)

    • Search Google Scholar
    • Export Citation
  • Girardi DM, Silva ACB, Rego JFM, Coudry RA & Riechelmann RP 2017 Unraveling molecular pathways of poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: a systematic review. Cancer Treatment Reviews 56 2835. (https://doi.org/10.1016/j.ctrv.2017.04.002)

    • Search Google Scholar
    • Export Citation
  • Hashemi J, Fotouhi O, Sulaiman L, Kjellman M, Hoog A, Zedenius J & Larsson C 2013 Copy number alterations in small intestinal neuroendocrine tumors determined by array comparative genomic hybridization. BMC Cancer 13 505. (https://doi.org/10.1186/1471-2407-13-505)

    • Search Google Scholar
    • Export Citation
  • Jesinghaus M, Konukiewitz B, Keller G, Kloor M, Steiger K, Reiche M, Penzel R, Endris V, Arsenic R & Hermann G et al.2017 Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Modern Pathology 30 610619. (https://doi.org/10.1038/modpathol.2016.220)

    • Search Google Scholar
    • Export Citation
  • Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL & Choti MA et al.2011 DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331 11991203. (https://doi.org/10.1126/science.1200609)

    • Search Google Scholar
    • Export Citation
  • Jones MH, Virtanen C, Honjoh D, Miyoshi T, Satoh Y, Okumura S, Nakagawa K, Nomura H & Ishikawa Y 2004 Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 363 775781. (https://doi.org/10.1016/S0140-6736(0415693-6)

    • Search Google Scholar
    • Export Citation
  • Jonkers YM, Claessen SM, Feuth T, van Kessel AG, Ramaekers FC, Veltman JA & Speel EJ 2006 Novel candidate tumour suppressor gene loci on chromosomes 11q23-24 and 22q13 involved in human insulinoma tumourigenesis. Journal of Pathology 210 450458. (https://doi.org/10.1002/path.2072)

    • Search Google Scholar
    • Export Citation
  • Karlsson A, Brunnström H, Lindquist KE, Jirström K, Jönsson M, Rosengren F, Reuterswärd C, Cirenajwis H, Borg Å & Jönsson P et al.2015 Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer. Oncotarget 6 220282203 7. (https://doi.org/10.18632/oncotarget.4314)

    • Search Google Scholar
    • Export Citation
  • Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J, Oukrif D, Mandair D, Pericleous M & Mohmaduvesh M et al.2016 Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clinical Cancer Research 22 250258. (https://doi.org/10.1158/1078-0432.CCR-15-0373)

    • Search Google Scholar
    • Export Citation
  • Kendig KI, Baheti S, Bockol MA, Drucker TM, Hart SN, Heldenbrand JR, Hernaez M, Hudson ME, Kalmbach MT & Klee EW et al.2019 Sentieon DNASeq variant calling workflow demonstrates strong computational performance and accuracy. Frontiers in Genetics 10 736. (https://doi.org/10.3389/fgene.2019.00736)

    • Search Google Scholar
    • Export Citation
  • Kim ST, Lee SJ, Park SH, Park JO, Lim HY, Kang WK, Lee J & Park YS 2016 Genomic profiling of metastatic gastroenteropancreatic neuroendocrine tumor (GEP-NET) patients in the personalized-medicine era. Journal of Cancer 7 10441048. (https://doi.org/10.7150/jca.14815)

    • Search Google Scholar
    • Export Citation
  • Klebanov N, Artomov M, Goggins WB, Daly E, Daly MJ & Tsao H 2019 Burden of unique and low prevalence somatic mutations correlates with cancer survival. Scientific Reports 9 4848. (https://doi.org/10.1038/s41598-019-41015-5)

    • Search Google Scholar
    • Export Citation
  • Klimstra DS, La Rosa S & Rindi G 2019 Classification of neuroendocrine neoplasms of the digestive system. In WHO Classification of Tumours: Digestive System Tumours, 5th ed., p. 16. Lyon, France: International Agency for Research on Cancer.

    • Search Google Scholar
    • Export Citation
  • Kunz PL 2015 Carcinoid and neuroendocrine tumors: building on success. Journal of Clinical Oncology 33 18551863. (https://doi.org/10.1200/JCO.2014.60.2532)

    • Search Google Scholar
    • Export Citation
  • Leoncini E, Boffetta P, Shafir M, Aleksovska K, Boccia S & Rindi G 2017 Increased incidence trend of low-grade and high-grade neuroendocrine neoplasms. Endocrine 58 368379. (https://doi.org/10.1007/s12020-017-1273-x)

    • Search Google Scholar
    • Export Citation
  • Liu CY, Stucker I, Chen C, Goodman G, McHugh MK, D’Amelio AM Jr, Etzel CJ, Li S, Lin X & Christiani DC 2015 Genome-wide gene-asbestos exposure interaction association study identifies a common susceptibility variant on 22q13.31 associated with lung cancer risk. Cancer Epidemiology, Biomarkers and Prevention 24 15641573. (https://doi.org/10.1158/1055-9965.EPI-15-0021)

    • Search Google Scholar
    • Export Citation
  • Lu M, Zhang P, Zhang Y, Li Z, Gong J, Li J, Li J, Li Y, Zhang X & Lu Z et al.2020 Efficacy, safety and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: a multiple-center phase Ib trial. Clinical Cancer Research 26 23372345. (https://doi.org/10.1158/1078-0432.CCR-19-4000)

    • Search Google Scholar
    • Export Citation
  • Mafficini A & Scarpa A 2019 Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocrine Reviews 40 506536. (https://doi.org/10.1210/er.2018-00160)

    • Search Google Scholar
    • Export Citation
  • Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, Davies H, Stratton MR & Campbell PJ 2017 Universal patterns of selection in cancer and somatic tissues. Cell 171 1029 .e211041.e21. (https://doi.org/10.1016/j.cell.2017.09.042)

    • Search Google Scholar
    • Export Citation
  • Mayakonda A, Lin DC, Assenov Y, Plass C & Koeffler HP 2018 Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Research 28 17471756. (https://doi.org/10.1101/gr.239244.118)

    • Search Google Scholar
    • Export Citation
  • Melendez B, Van Campenhout C, Rorive S, Remmelink M, Salmon I & D’Haene N 2018 Methods of measurement for tumor mutational burden in tumor tissue. Translational Lung Cancer Research 7 661667. (https://doi.org/10.21037/tlcr.2018.08.02)

    • Search Google Scholar
    • Export Citation
  • Monti S, Tamayo P, Mesirov J & Golub T 2003 Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52 91118. (https://doi.org/10.1023/A:1023949509487)

    • Search Google Scholar
    • Export Citation
  • Munchel S, Hoang Y, Zhao Y, Cottrell J, Klotzle B, Godwin AK, Koestler D, Beyerlein P, Fan JB & Bibikova M et al.2015 Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics. Oncotarget 6 2594325961. (https://doi.org/10.18632/oncotarget.4671)

    • Search Google Scholar
    • Export Citation
  • Nakamura M, Ishida E, Shimada K, Kishi M, Nakase H, Sakaki T & Konishi N 2005 Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Laboratory Investigation 85 165175. (https://doi.org/10.1038/labinvest.3700223)

    • Search Google Scholar
    • Export Citation
  • National Comprehensive Cancer Network: 2020 Neuroendocrine and Adrenal Tumors. Ed Shah M Plymouth Meeting, PA, USA: National Comprehensive Cancer Network. (available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1448)

    • Search Google Scholar
    • Export Citation
  • Oronsky B, Ma PC, Morgensztern D & Carter CA 2018 Nothing but NET: a review of neuroendocrine tumors and carcinomas. Neoplasia 19 9911002. (https://doi.org/10.1016/j.neo.2017.09.002)

    • Search Google Scholar
    • Export Citation
  • Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R & Zander T et al.2012 Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics 44 11041110. (https://doi.org/10.1038/ng.2396)

    • Search Google Scholar
    • Export Citation
  • Puccini A, Poorman K, Salem ME, Soldato D, Seeber A, Goldberg RM, Shields AF, Xiu J, Battaglin F & Berger MD et al.2020 Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Clinical Cancer Research 26 59435951. (https://doi.org/10.1158/1078-0432.CCR-20-1804)

    • Search Google Scholar
    • Export Citation
  • Raj N, Shah R, Stadler Z, Mukherjee S, Chou J, Untch B, Li J, Kelly V, Saltz LB & Mandelker D et al.2018 Real-time genomic characterization of metastatic pancreatic neuroendocrine tumors has prognostic implications and identifies potential germline actionability. JCO Precision Oncology 2018 PO.17.00267. (https://doi.org/10.1200/PO.17.00267)

    • Search Google Scholar
    • Export Citation
  • Reis PP, Rogatto SR, Kowalski LP, Nishimoto IN, Montovani JC, Corpus G, Squire JA & Kamel-Reid S 2002 Quantitative real-time PCR identifies a critical region of deletion on 22q13 related to prognosis in oral cancer. Oncogene 21 64806487. (https://doi.org/10.1038/sj.onc.1205864)

    • Search Google Scholar
    • Export Citation
  • Rekhtman N, Pietanza MC, Hellmann MD, Naidoo J, Arora A, Won H, Halpenny DF, Wang H, Tian SK & Litvak AM et al.2016 Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clinical Cancer Research 22 36183629. (https://doi.org/10.1158/1078-0432.CCR-15-2946)

    • Search Google Scholar
    • Export Citation
  • Roy S, LaFramboise WA, Liu TC, Cao D, Luvison A, Miller C, Lyons MA, O’Sullivan RJ, Zureikat AH & Hogg ME et al.2018 Loss of chromatin remodeling proteins and/or CDKN2A associates with metastasis of pancreatic neuroendocrine tumors and reduced patient survival times. Gastroenterology 154 2060 .e82063.e8. (https://doi.org/10.1053/j.gastro.2018.02.026)

    • Search Google Scholar
    • Export Citation
  • Sahnane N, Furlan D, Monti M, Romualdi C, Vanoli A, Vicari E, Solcia E, Capella C, Sessa F & La Rosa S 2015 Microsatellite unstable gastrointestinal neuroendocrine carcinomas: a new clinicopathologic entity. Endocrine-Related Cancer 22 3545. (https://doi.org/10.1530/ERC-14-0410)

    • Search Google Scholar
    • Export Citation
  • Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ & Omuro A et al.2019 Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genetics 51 202206. (https://doi.org/10.1038/s41588-018-0312-8)

    • Search Google Scholar
    • Export Citation
  • Sanchez-Vega F, Mina M, Armenia J, Chatila W, Luna A, La K, Dimitriadoy S, Liu D, Kantheti H, Saghafinia S, et al.2018 Oncogenic signaling pathways in the Cancer Genome Atlas. Cell 173 321.e10337.e10. (https://doi.org/10.1016/j.cell.2018.03.035)

    • Search Google Scholar
    • Export Citation
  • Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK & Mafficini A et al.2017 Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543 6571. (https://doi.org/10.1038/nature21063)

    • Search Google Scholar
    • Export Citation
  • Shanks A, Choi J & Karur V 2018 Dramatic response to cyclin D-dependent kinase 4/6 inhibitor in refractory poorly differentiated neuroendocrine carcinoma of the breast. Proceedings 31 352354. (https://doi.org/10.1080/08998280.2018.1463041)

    • Search Google Scholar
    • Export Citation
  • Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I & Forbes SA 2018 The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nature Reviews: Cancer 18 696705. (https://doi.org/10.1038/s41568-018-0060-1)

    • Search Google Scholar
    • Export Citation
  • Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, Dueland S, Hofsli E, Guren MG & Ohrling K et al.2013 Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the Nordic NEC study. Annals of Oncology 24 152160. (https://doi.org/10.1093/annonc/mds276)

    • Search Google Scholar
    • Export Citation
  • Spencer DH, Sehn JK, Abel HJ, Watson MA, Pfeifer JD & Duncavage EJ 2013 Comparison of clinical targeted next-generation sequence data from formalin-fixed and fresh-frozen tissue specimens. Journal of Molecular Diagnostics 15 623633. (https://doi.org/10.1016/j.jmoldx.2013.05.004)

    • Search Google Scholar
    • Export Citation
  • Strosberg JR, Coppola D, Klimstra DS, Phan AT, Kulke MH, Wiseman GA, Kvols LK & North American Neuroendocrine Tumor Society (NANETS) 2010 The NANETS consensus guidelines for the diagnosis and management of poorly differentiated (high-grade) extrapulmonary neuroendocrine carcinomas. Pancreas 39 799800. (https://doi.org/10.1097/MPA.0b013e3181ebb56f)

    • Search Google Scholar
    • Export Citation
  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR & Lander ES et al.2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102 1554515550. (https://doi.org/10.1073/pnas.0506580102)

    • Search Google Scholar
    • Export Citation
  • Takizawa N, Ohishi Y, Hirahashi M, Takahashi S, Nakamura K, Tanaka M, Oki E, Takayanagi R & Oda Y 2015 Molecular characteristics of colorectal neuroendocrine carcinoma; similarities with adenocarcinoma rather than neuroendocrine tumor. Human Pathology 46 18901900. (https://doi.org/10.1016/j.humpath.2015.08.006)

    • Search Google Scholar
    • Export Citation
  • Tibshirani R, Walther G & Hastie T 2020 Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society 63 411423. (https://doi.org/10.1111/1467-9868.00293)

    • Search Google Scholar
    • Export Citation
  • Uccella S, La Rosa S, Metovic J, Marchiori D, Scoazec J, Volante M, Mete O & Papotti M 2021 Genomics of high-grade neuroendocrine neoplasms: well-differentiated neuroendocrine tumor with high-grade features (G3 NET) and neuroendocrine carcinomas (NEC) of various anatomic sites. Endocrine Pathology 32 192210. (https://doi.org/10.1007/s12022-020-09660-z)

    • Search Google Scholar
    • Export Citation
  • Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, Jane-Valbuena J, Friedrich DC, Kryukov G & Carter SL et al.2014 Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nature Medicine 20 682688. (https://doi.org/10.1038/nm.3559)

    • Search Google Scholar
    • Export Citation
  • Väremo L, Nielsen J & Nookaew I 2013 Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Research 41 43784391. (https://doi.org/10.1093/nar/gkt111)

    • Search Google Scholar
    • Export Citation
  • Venizelos A, Elvebakken H, Perren A, Nikolaienko O, Deng W, Lothe IMB, Couvelard A, Hjortland GO, Sundlöv A & Svensson J et al.2021 The molecular characteristics of high-grade gastroenteropancreatic neuroendocrine neoplasms. Endocrine-Related Cancer 29 114. (https://doi.org/10.1530/ERC-21-0152)

    • Search Google Scholar
    • Export Citation
  • Vijayvergia N, Boland PM, Handorf E, Gustafson KS, Gong Y, Cooper HS, Sheriff F, Astsaturov I, Cohen SJ & Engstrom PF 2016 Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: a Fox Chase Cancer Center Pilot Study. British Journal of Cancer 115 564570. (https://doi.org/10.1038/bjc.2016.229)

    • Search Google Scholar
    • Export Citation
  • Wang H, Sun L, Bao H, Wang A, Zhang P, Wu X, Tong X, Wang X, Luo J & Shen L et al.2019 Genomic dissection of gastrointestinal and lung neuroendocrine neoplasm. Chinese Journal of Cancer Research 31 918929. (https://doi.org/10.21147/j.issn.1000-9604.2019.06.08)

    • Search Google Scholar
    • Export Citation
  • Weber MM & Fottner C 2018 Immune checkpoint inhibitors in the treatment of patients with neuroendocrine neoplasia. Oncology Research and Treatment 41 306312. (https://doi.org/10.1159/000488996)

    • Search Google Scholar
    • Export Citation
  • WHO Classification of Tumours Editorial Board 2021 Thoracic Tumours. Lyon, France: International Agency for Research on Cancer.

  • Woischke C, Schaaf CW, Yang HM, Vieth M, Veits L, Geddert H, Märkl B, Stömmer P, Schaeffer DF & Frölich M et al.2017 In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. Modern Pathology 30 95103. (https://doi.org/10.1038/modpathol.2016.150)

    • Search Google Scholar
    • Export Citation
  • Wong HL, Yang KC, Shen Y, Zhao EY, Loree JM, Kennecke HF, Kalloger SE, Karasinska JM, Lim HJ & Mungall AJ et al.2018 Molecular characterization of metastatic pancreatic neuroendocrine tumors (PNETs) using whole-genome and transcriptome sequencing. Cold Spring Harbor Molecular Case Studies 4 a002329. (https://doi.org/10.1101/mcs.a002329)

    • Search Google Scholar
    • Export Citation
  • Xia LC, Van Hummelen P, Kubit M, Lee H, Bell JM, Grimes SM, Wood-Bouwens C, Greer SU, Barker T & Haslem DS et al.2020 Whole genome analysis identifies the association of TP53 genomic deletions with lower survival in stage III colorectal cancer. Scientific Reports 10 5009. (https://doi.org/10.1038/s41598-020-61643-6)

    • Search Google Scholar
    • Export Citation
  • Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J & Demarzo AM et al.2012 Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. American Journal of Surgical Pathology 36 173184. (https://doi.org/10.1097/PAS.0b013e3182417d36)

    • Search Google Scholar
    • Export Citation
  • Yachida S, Totoki Y, Noë M, Nakatani Y, Horie M, Kawasaki K, Nakamura H, Saito-Adachi M, Suzuki M & Takai E et al.2022 Comprehensive genomic profiling of neuroendocrine carcinomas of the gastrointestinal system. Cancer Discovery 12 692711. (https://doi.org/10.1158/2159-8290.CD-21-0669)

    • Search Google Scholar
    • Export Citation
  • Yao J, Garg A, Chen D, Capdevila J, Engstrom P, Pommier R, Van Cutsem E, Singh S, Fazio N & He W et al.2019 Genomic profiling of NETs: a comprehensive analysis of the RADIANT trials. Endocrine-Related Cancer 26 391403. (https://doi.org/10.1530/ERC-18-0332)

    • Search Google Scholar
    • Export Citation
  • Zhao L & Yan H 2020 MCNF: a novel method for cancer subtyping by integrating multi-omics and clinical data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 17 16821690. (https://doi.org/10.1109/TCBB.2019.2910515)

    • Search Google Scholar
    • Export Citation