Effects of dabrafenib and erlotinib combination treatment on anaplastic thyroid carcinoma

in Endocrine-Related Cancer
View More View Less
  • 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • | 2 Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
  • | 3 Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Correspondence should be addressed to M J Jeon and W G Kim: mj080332@gmail.com or wongukim@amc.seoul.kr

*(Y-S Choi and H Kwon contributed equally to this work)

Restricted access

Dabrafenib is a BRAF kinase inhibitor approved for treatment of BRAF-mutated anaplastic thyroid carcinoma (ATC) in combination with trametinib. Erlotinib is a tyrosine kinase inhibitor of EGF receptor (EGFR). We evaluated effects of dabrafenib and erlotinib combination treatment on ATC cells in vitro and in vivo. Cell proliferation, colony formation, apoptosis, and migration of ATC cells harboring a BRAF mutation (BHT101, 8505C, and SW1736) were evaluated after treatment with dabrafenib in combination with erlotinib or trametinib. The changes in activation of mitogen extracellular kinase (MEK) and extracellular signal-related kinase (ERK) signaling were also evaluated by Western blot analysis. Effects of these combinations were also evaluated using an in vivo xenograft model. First, we detected EGFR activation in dabrafenib-resistant SW1736 cells using a phospho-receptor tyrosine kinase array. A dabrafenib and erlotinib combination synergistically inhibited cell proliferation, colony formation, and migration, with an induction of apoptotic cell death in all three ATC cells, compared with dabrafenib or erlotinib alone. This synergistic effect was comparable with a dabrafenib and trametinib combination. The dabrafenib and erlotinib combination effectively inhibited phosphorylated (p)-MEK, p-ERK, and p-EGFR expressions compared with dabrafenib or erlotinib alone, while the dabrafenib and trametinib combination only inhibited p-MEK and p-ERK expressions. The dabrafenib with erlotinib or trametinib combinations also significantly suppressed tumor growth and induced apoptosis in a BHT101 xenograft model. The dabrafenib and erlotinib combination could be a potential novel treatment regimen to overcome drug resistance to dabrafenib alone in patients with BRAF-mutated ATC.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 243 243 243
Full Text Views 30 30 30
PDF Downloads 44 44 44
  • Chen L, Ye HL, Zhang G, Yao WM, Chen XZ, Zhang FC & Liang G 2014 Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells. PLoS ONE 9 e85771. (https://doi.org/10.1371/journal.pone.0085771)

    • Search Google Scholar
    • Export Citation
  • Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, Brown RD, Della Pelle P, Dias-Santagata D & Hung KE et al.2012 EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discovery 2 227235. (https://doi.org/10.1158/2159-8290.CD-11-0341)

    • Search Google Scholar
    • Export Citation
  • Danysh BP, Rieger EY, Sinha DK, Evers CV, Cote GJ, Cabanillas ME & Hofmann MC 2016 Long-term vemurafenib treatment drives inhibitor resistance through a spontaneous KRAS G12D mutation in a BRAF V600E papillary thyroid carcinoma model. Oncotarget 7 3090730923. (https://doi.org/10.18632/oncotarget.9023)

    • Search Google Scholar
    • Export Citation
  • De Leo S, Trevisan M & Fugazzola L 2020 Recent advances in the management of anaplastic thyroid cancer. Thyroid Research 13 17. (https://doi.org/10.1186/s13044-020-00091-w)

    • Search Google Scholar
    • Export Citation
  • Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, Cabanillas ME, Sherman SI, Ma B & Curtis M et al.2015 BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid 25 7177. (https://doi.org/10.1089/thy.2014.0123)

    • Search Google Scholar
    • Export Citation
  • Ferrari SM, Elia G, Ragusa F, Ruffilli I, La Motta C, Paparo SR, Patrizio A, Vita R, Benvenga S & Materazzi G et al.2020 Novel treatments for anaplastic thyroid carcinoma. Gland Surgery 9 S28–S42. (https://doi.org/10.21037/gs.2019.10.18)

    • Search Google Scholar
    • Export Citation
  • Gerbasi ME, Stellato D, Ghate SR, Ndife B, Moynahan A, Mishra D, Gunda P, Koruth R & Delea TE 2019 Cost-effectiveness of dabrafenib and trametinib in combination as adjuvant treatment of BRAF V600E/K mutation-positive melanoma from a US healthcare payer perspective. Journal of Medical Economics 22 12431252. (https://doi.org/10.1080/13696998.2019.1635487)

    • Search Google Scholar
    • Export Citation
  • Hogan T, Jing Jie Yu, Williams HJ, Altaha R, Xiaobing Liang & Qi He 2009 Oncocytic, focally anaplastic, thyroid cancer responding to erlotinib. Journal of Oncology Pharmacy Practice 15 111117. (https://doi.org/10.1177/1078155208101212)

    • Search Google Scholar
    • Export Citation
  • Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL & Hollebecque A et al.2015 Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. New England Journal of Medicine 373 726736. (https://doi.org/10.1056/NEJMoa1502309)

    • Search Google Scholar
    • Export Citation
  • Hyung Kwon B, Hwi Jung N, Yang YJ, Park JH, Kwon HJ, Chang JW, Ban MJ, Kim WS, Shin DY & Lee EJ et al.2014 Mechanism of resistance and epithelial to mesenchymal transition of BRAF(V600E) mutation thyroid anaplastic cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Korean Journal of Head and Neck Oncology 30 5361.

    • Search Google Scholar
    • Export Citation
  • Iyer PC, Dadu R, Ferrarotto R, Busaidy NL, Habra MA, Zafereo M, Gross N, Hess KR, Gule-Monroe M & Williams MD et al.2018 Real-world experience with targeted therapy for the treatment of anaplastic thyroid carcinoma. Thyroid 28 7987. (https://doi.org/10.1089/thy.2017.0285)

    • Search Google Scholar
    • Export Citation
  • Jeon MJ, Chun SM, Kim D, Kwon H, Jang EK, Kim TY, Kim WB, Shong YK, Jang SJ & Song DE et al.2016 Genomic alterations of anaplastic thyroid carcinoma detected by targeted massive parallel sequencing in a BRAF(V600E) mutation-prevalent area. Thyroid 26 683690. (https://doi.org/10.1089/thy.2015.0506)

    • Search Google Scholar
    • Export Citation
  • Kebebew E, Greenspan FS, Clark OH, Woeber KA & McMillan A 2005 Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer 103 13301335. (https://doi.org/10.1002/cncr.20936)

    • Search Google Scholar
    • Export Citation
  • Kim JG 2014 Molecular pathogenesis and targeted therapies in well-differentiated thyroid carcinoma. Endocrinology and Metabolism 29 211216. (https://doi.org/10.3803/EnM.2014.29.3.211)

    • Search Google Scholar
    • Export Citation
  • Kim I, Choi YS, Song JH, Choi EA, Park S, Lee EJ, Rhee JK, Kim SC & Chang S 2018 A drug-repositioning screen for primary pancreatic ductal adenocarcinoma cells identifies 6-thioguanine as an effective therapeutic agent for TPMT-low cancer cells. Molecular Oncology 12 15261539. (https://doi.org/10.1002/1878-0261.12364)

    • Search Google Scholar
    • Export Citation
  • Kim WB, Jeon MJ, Kim WG, Kim TY & Shong YK 2020 Unmet clinical needs in the treatment of patients with thyroid cancer. Endocrinology and Metabolism 35 1425. (https://doi.org/10.3803/EnM.2020.35.1.14)

    • Search Google Scholar
    • Export Citation
  • Kurata K, Onoda N, Noda S, Kashiwagi S, Asano Y, Hirakawa K & Ohira M 2016 Growth arrest by activated BRAF and MEK inhibition in human anaplastic thyroid cancer cells. International Journal of Oncology 49 23032308. (https://doi.org/10.3892/ijo.2016.3723)

    • Search Google Scholar
    • Export Citation
  • Landa I & Knauf JA 2019 Mouse models as a tool for understanding progression in BrafV600E-driven thyroid cancers. Endocrinology and Metabolism 34 1122. (https://doi.org/10.3803/EnM.2019.34.1.11)

    • Search Google Scholar
    • Export Citation
  • Lee EK & Park YJ 2021 Best achievements in clinical thyroidology in 2020. Endocrinology and Metabolism 36 3035. (https://doi.org/10.3803/EnM.2021.103)

    • Search Google Scholar
    • Export Citation
  • McFadden DG, Vernon A, Santiago PM, Martinez-McFaline R, Bhutkar A, Crowley DM, McMahon M, Sadow PM & Jacks T 2014 p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. PNAS 111 E1600E1609. (https://doi.org/10.1073/pnas.1404357111)

    • Search Google Scholar
    • Export Citation
  • Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N & Fagin JA 2013 Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discovery 3 520533. (https://doi.org/10.1158/2159-8290.CD-12-0531)

    • Search Google Scholar
    • Export Citation
  • Nobuhara Y, Onoda N, Yamashita Y, Yamasaki M, Ogisawa K, Takashima T, Ishikawa T & Hirakawa K 2005 Efficacy of epidermal growth factor receptor-targeted molecular therapy in anaplastic thyroid cancer cell lines. British Journal of Cancer 92 11101116. (https://doi.org/10.1038/sj.bjc.6602461)

    • Search Google Scholar
    • Export Citation
  • Notarangelo T, Sisinni L, Condelli V & Landriscina M 2017 Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells. Cancer Cell International 17 86. (https://doi.org/10.1186/s12935-017-0457-z)

    • Search Google Scholar
    • Export Citation
  • Onoda N, Nakamura M, Aomatsu N, Noda S, Kashiwagi S, Kurata K, Uchino S & Hirakawa K 2015 Significant cytostatic effect of everolimus on a gefitinib-resistant anaplastic thyroid cancer cell line harboring PI3KCA gene mutation. Molecular and Clinical Oncology 3 522526. (https://doi.org/10.3892/mco.2015.496)

    • Search Google Scholar
    • Export Citation
  • Ouyang B, Knauf JA, Smith EP, Zhang L, Ramsey T, Yusuff N, Batt D & Fagin JA 2006 Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clinical Cancer Research 12 17851793. (https://doi.org/10.1158/1078-0432.CCR-05-1729)

    • Search Google Scholar
    • Export Citation
  • Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A & Bernards R 2012 Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483 100103. (https://doi.org/10.1038/nature10868)

    • Search Google Scholar
    • Export Citation
  • Rocha-Lima CM & Raez LE 2009 Erlotinib (Tarceva) for the treatment of non-small-cell lung cancer and pancreatic cancer. Pharmacy and Therapeutics 34 554564.

    • Search Google Scholar
    • Export Citation
  • Schiff BA, McMurphy AB, Jasser SA, Younes MN, Doan D, Yigitbasi OG, Kim S, Zhou G, Mandal M & Bekele BN et al.2004 Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clinical Cancer Research 10 85948602. (https://doi.org/10.1158/1078-0432.CCR-04-0690)

    • Search Google Scholar
    • Export Citation
  • Song YS & Park YJ 2019 Genomic characterization of differentiated thyroid carcinoma. Endocrinology and Metabolism 34 110. (https://doi.org/10.3803/EnM.2019.34.1.1)

    • Search Google Scholar
    • Export Citation
  • Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski C, Cabanillas ME & Urbanowitz G et al.2018 Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. Journal of Clinical Oncology 36 713. (https://doi.org/10.1200/JCO.2017.73.6785)

    • Search Google Scholar
    • Export Citation
  • Ting J, Tien Ho P, Xiang P, Sugay A, Abdel-Sattar M & Wilson L 2015 Cost-effectiveness and value of information of erlotinib, afatinib, and cisplatin-pemetrexed for first-line treatment of advanced EGFR mutation-positive non-small-cell lung cancer in the United States. Value in Health 18 774782. (https://doi.org/10.1016/j.jval.2015.04.008)

    • Search Google Scholar
    • Export Citation
  • Xing M 2013 Molecular pathogenesis and mechanisms of thyroid cancer. Nature Reviews: Cancer 13 184199. (https://doi.org/10.1038/nrc3431)

  • You MH, Jeon MJ, Kim TY, Kim WB, Shong YK & Kim WG 2019 Expression of NF2 modulates the progression of BRAFV600E mutated thyroid cancer cells. Endocrinology and Metabolism 34 203212. (https://doi.org/10.3803/EnM.2019.34.2.203)

    • Search Google Scholar
    • Export Citation