Two miRNAs enriched in plasma extracellular vesicles are potential biomarkers for thyroid cancer

in Endocrine-Related Cancer
View More View Less
  • 1 CELL Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
  • | 2 FATH & MORF Unit, IREC, Université Catholique de Louvain, Brussels, Belgium
  • | 3 Neurochemistry group, Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
  • | 4 PICT Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
  • | 5 Surgery and Abdominal Transplantation Division, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium

Correspondence should be addressed to O Delcorte or C E Pierreux: ophelie.delcorte@uclouvain.be or christophe.pierreux@uclouvain.be
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Differential diagnosis of thyroid cancer and benign nodules is still one of the most challenging issues in the field of endocrinology. To overcome overdiagnosis of papillary thyroid carcinomas (PTC) and the consecutive overtreatment of multinodular diseases, the search for easily accessible, sensitive and accurate biomarkers is critical. Several micro-RNAs (miRNAs) freely circulating in peripheral blood or enclosed in extracellular vesicles (EVs) have been proposed as potential biomarkers from non-invasive liquid biopsies. However, protocols are rarely comparable and conflicting data exist in the literature. In this work, we aimed to assess the diagnostic value of six micro-RNAs by comparing their expression in thyroid tissue to their abundance in bulk plasma and in plasma-EVs, before and after thyroid surgery. Plasma-EVs were isolated using a sequential density- and size-based fractionation, followed by in-depth characterization, confirming EV purity. Micro-RNA levels were measured by RT-qPCR in thyroid tissue, plasma and plasma-EVs. Among the six candidates, only miR-146b-5p and miR-21a-5p displayed a significant differential abundance in purified plasma-derived EVs from patients with PTC and benign disease. However, no difference could be demonstrated in bulk plasma through our cohort of patients. Overall, our work supports the use of a well-defined protocol of plasma-EV miRNAs purification for biomarker discovery, rather than the use of freely circulating miRNAs in bulk plasma. Our work also demonstrates that standardized pre-analytical and analytical procedures as well as optimized EV-miRNAs detection methods are essential.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 41 41 41
Full Text Views 0 0 0
PDF Downloads 1 1 1
  • Ab Mutalib NS, Othman SN, Mohamad Yusof A, Abdullah Suhaimi SN, Muhammad R & Jamal R 2016 Integrated microRNA, gene expression and transcription factors signature in papillary thyroid cancer with lymph node metastasis. PeerJ 4 e2119. (https://doi.org/10.7717/peerj.2119)

    • Search Google Scholar
    • Export Citation
  • Banks WA, Sharma P, Bullock KM, Hansen KM, Ludwig N & Whiteside TL 2020 Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. International Journal of Molecular Sciences 21 4407. (https://doi.org/10.3390/ijms21124407)

    • Search Google Scholar
    • Export Citation
  • Biro O, Fothi Á, Alasztics B, Nagy B, Orban TI & Rigo Jr J 2019 Circulating exosomal and argonaute-bound microRNAs in preeclampsia. Gene 692 138144. (https://doi.org/10.1016/j.gene.2019.01.012)

    • Search Google Scholar
    • Export Citation
  • Capriglione F, Verrienti A, Celano M, Maggisano V, Sponziello M, Pecce V, Gagliardi A, Giacomelli L, Aceti V & Durante C et al.2021 Analysis of serum microRNA in exosomal vehicles of papillary thyroid cancer. Endocrine 75 185193. (https://doi.org/10.1007/s12020-021-02847-2)

    • Search Google Scholar
    • Export Citation
  • Castagna MG, Marzocchi C, Pilli T, Forleo R, Pacini F & Cantara S 2019 MicroRNA expression profile of thyroid nodules in fine-needle aspiration cytology: a confirmatory series. Journal of Endocrinological Investigation 42 97100. (https://doi.org/10.1007/s40618-018-0880-6)

    • Search Google Scholar
    • Export Citation
  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR & Andersen MR et al.2005 Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research 33 e179. (https://doi.org/10.1093/nar/gni178)

    • Search Google Scholar
    • Export Citation
  • Chen H, Liu H, Zou H, Chen R, Dou Y, Sheng S, Dai S, Ai J, Melson J & Kittles RA et al.2016 Evaluation of plasma miR-21 and miR-152 as diagnostic biomarkers for common types of human cancers. Journal of Cancer 7 490499. (https://doi.org/10.7150/jca.12351)

    • Search Google Scholar
    • Export Citation
  • Cheng L, Sharples RA, Scicluna BJ & Hill AF 2014 Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. Journal of Extracellular Vesicles 3 26. (https://doi.org/10.3402/jev.v3.23743)

    • Search Google Scholar
    • Export Citation
  • Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK & Gallichotte EN et al.2014 Quantitative and stoichiometric analysis of the microRNA content of exosomes. PNAS 111 1488814893. (https://doi.org/10.1073/pnas.1408301111)

    • Search Google Scholar
    • Export Citation
  • Dai D, Tan Y, Guo L, Tang A & Zhao Y 2020 Identification of exosomal miRNA biomarkers for diagnosis of papillary thyroid cancer by small RNA sequencing. European Journal of Endocrinology 182 111121. (https://doi.org/10.1530/EJE-19-0524)

    • Search Google Scholar
    • Export Citation
  • Dang XTT, Kavishka JM, Zhang DX, Pirisinu M & Le MTN 2020 Extracellular vesicles as an efficient and versatile system for drug delivery. Cells 9 2191. (https://doi.org/10.3390/cells9102191)

    • Search Google Scholar
    • Export Citation
  • Degosserie J, Heymans C, Spourquet C, Halbout M, D’Auria L, Van Der Smissen P, Vertommen D, Courtoy PJ, Tyteca D & Pierreux CE 2018 Extracellular vesicles from endothelial progenitor cells promote thyroid follicle formation. Journal of Extracellular Vesicles 7 1487250. (https://doi.org/10.1080/20013078.2018.1487250)

    • Search Google Scholar
    • Export Citation
  • Delcorte O, Spourquet C, Lemoine P, Degosserie J, Van Der Smissen P, Dauguet N, Loriot A, Knauf JA, Gatto L & Marbaix E et al.2022 BRAFV600E induction in thyrocytes triggers important changes in the miRNAs content and the populations of extracellular vesicles released in thyroid tumor microenvironment. Biomedicines 10 755. (https://doi.org/10.3390/biomedicines10040755)

    • Search Google Scholar
    • Export Citation
  • Driedonks T, Jiang L, Carlson B, Han Z, Liu G, Queen SE, Shirk EN, Gololobova O, Nyberg L & Lima G et al.2021 Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and intranasally to Macaca nemestrina. bioRxiv. (https://doi.org/10.1101/2021.07.28.454192)

    • Search Google Scholar
    • Export Citation
  • Du JW, Li GQ, Li YS & Qiu XG 2021 Identification of prognostic biomarkers related to the tumor microenvironment in thyroid carcinoma. Scientific Reports 11 16239. (https://doi.org/10.1038/s41598-021-90538-3)

    • Search Google Scholar
    • Export Citation
  • Durante C, Grani G, Lamartina L, Filetti S, Mandel SJ & Cooper DS 2018 The diagnosis and management of thyroid nodules: a review. JAMA 319 914924. (https://doi.org/10.1001/jama.2018.0898)

    • Search Google Scholar
    • Export Citation
  • EV-TRACK Consortium, Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, Martinez ZA, Baetens T & Beghein E et al.2017 EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods 14 228232. (https://doi.org/10.1038/nmeth.4185)

    • Search Google Scholar
    • Export Citation
  • Fagin JA & Wells Jr SA 2016 Biologic and clinical perspectives on thyroid cancer. New England Journal of Medicine 375 10541067. (https://doi.org/10.1056/NEJMra1501993)

    • Search Google Scholar
    • Export Citation
  • Gallo A, Tandon M, Alevizos I & Illei GG 2012 The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 7 e30679. (https://doi.org/10.1371/journal.pone.0030679)

    • Search Google Scholar
    • Export Citation
  • Garcia-Martin R, Wang G, Brandão BB, Zanotto TM, Shah S, Kumar Patel S, Schilling B & Kahn CR 2022 MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601 446451. (https://doi.org/10.1038/s41586-021-04234-3)

    • Search Google Scholar
    • Export Citation
  • Ge Q, Zhou Y, Lu J, Bai Y, Xie X & Lu Z 2014 miRNA in plasma exosome is stable under different storage conditions. Molecules 19 15681575. (https://doi.org/10.3390/molecules19021568)

    • Search Google Scholar
    • Export Citation
  • Jankovic M, J, Guillén-Sacoto MA, Makiadi-Alvarado J, Wert-Lamas L, Ramirez-Moya J, Robledo M, Santisteban P & Riesco-Eizaguirre G 2022 Circulating microRNA profiles as potential biomarkers for differentiated thyroid cancer recurrence. Journal of Clinical Endocrinology and Metabolism 97 20842092. (https://doi.org/10.1210/jc.2011-3059)

    • Search Google Scholar
    • Export Citation
  • Jiang K, Li G, Chen W, Song L, Wei T, Li Z, Gong R, Lei J, Shi H & Zhu J 2020 Plasma Exosomal miR-146b-5p and miR-222-3p are potential biomarkers for lymph node metastasis in papillary thyroid carcinomas. OncoTargets and Therapy 13 13111319. (https://doi.org/10.2147/OTT.S231361)

    • Search Google Scholar
    • Export Citation
  • Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, Lotvall J & Lasser C 2018 Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cellular and Molecular Life Sciences 75 28732886. (https://doi.org/10.1007/s00018-018-2773-4)

    • Search Google Scholar
    • Export Citation
  • Keller A, Gröger L, Tschernig T, Solomon J, Laham O, Schaum N, Wagner V, Kern F, Schmartz GP & Li Y et al.2021 miRNATissueAtlas2: an update to the human miRNA tissue atlas. Nucleic Acids Research 50 D211D221. (https://doi.org/10.1093/nar/gkab808)

    • Search Google Scholar
    • Export Citation
  • Khatami F & Tavangar SM 2018 Liquid biopsy in thyroid cancer: new insight. International Journal of Hematology: Oncology and Stem Cell Research 12 235248.

    • Search Google Scholar
    • Export Citation
  • Konig L, Kasimir-Bauer S, Bittner AK, Hoffmann O, Wagner B, Santos Manvailer LF, Kimmig R, Horn PA & Rebmann V 2017 Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. Oncoimmunology 7 e1376153. (https://doi.org/10.1080/2162402X.2017.1376153)

    • Search Google Scholar
    • Export Citation
  • Lee JC, Zhao JT, Clifton-Bligh RJ, Gill A, Gundara JS, Ip JC, Glover A, Sywak MS, Delbridge LW & Robinson BG et al.2013 MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer 119 43584365. (https://doi.org/10.1002/cncr.28254)

    • Search Google Scholar
    • Export Citation
  • Lee JC, Zhao JT, Gundara J, Serpell J, Bach LA & Sidhu S 2015 Papillary thyroid cancer-derived exosomes contain miRNA-146b and miRNA-222. Journal of Surgical Research 196 3948. (https://doi.org/10.1016/j.jss.2015.02.027)

    • Search Google Scholar
    • Export Citation
  • Li N, Liu X, Han L, Zhou R, Yan J, Zhao G & Liu L 2019 Expression of miRNA-146b-5p in patients with thyroid cancer in combination with Hashimoto’s disease and its clinical significance. Oncology Letters 17 48714876. (https://doi.org/10.3892/ol.2019.10173)

    • Search Google Scholar
    • Export Citation
  • Li G, Tang W & Yang F 2020a Cancer liquid biopsy using integrated microfluidic exosome analysis platforms. Biotechnology Journal 15 e1900225. (https://doi.org/10.1002/biot.201900225)

    • Search Google Scholar
    • Export Citation
  • Li M, Maso LD & Vaccarella S 2020b Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet: Diabetes and Endocrinology 8 468470. (https://doi.org/10.1016/S2213-8587(2030115-7)

    • Search Google Scholar
    • Export Citation
  • Liang K, Liu F, Fan J, Sun D, Liu C, Lyon CJ, Bernard DW, Li Y, Yokoi K & Katz MH et al.2017 Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nature Biomedical Engineering 1 0021. (https://doi.org/10.1038/s41551-016-0021)

    • Search Google Scholar
    • Export Citation
  • Liu T, Zhang Q, Zhang J, Li C, Miao YR, Lei Q, Li Q & Guo AY 2019 EVmiRNA: a database of miRNA profiling in extracellular vesicles. Nucleic Acids Research 47 D89D93. (https://doi.org/10.1093/nar/gky985)

    • Search Google Scholar
    • Export Citation
  • Lu Y, Lan N, Zhang Y, Nie X, Pu S & Yuan W 2020 Role of extracellular vesicles in the progression, diagnosis and treatment of thyroid cancer (Review). International Journal of Oncology 57 881889. (https://doi.org/10.3892/ijo.2020.5111)

    • Search Google Scholar
    • Export Citation
  • Luo D, Zhan S, Xia W, Huang L, Ge W & Wang T 2018 Proteomics study of serum exosomes from papillary thyroid cancer patients. Endocrine-Related Cancer 25 879891. (https://doi.org/10.1530/ERC-17-0547)

    • Search Google Scholar
    • Export Citation
  • Mahmoudian-Sani MR, Amrollahi-Sharifabadi M, Taheri A, Hosseini SM, Tahmasebi K & Mobini GR 2020 Diagnostic value of the candidate microRNAs in thyroid fine-needle aspiration biopsy (FNAB) samples. Hormone Molecular Biology and Clinical Investigation 41 10.1515. (https://doi.org/10.1515/hmbci-2019-0027)

    • Search Google Scholar
    • Export Citation
  • Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F & Vandesompele J 2008 High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Research 36 e143. (https://doi.org/10.1093/nar/gkn725)

    • Search Google Scholar
    • Export Citation
  • Min L, Zhu S, Chen L, Liu X, Wei R, Zhao L, Yang Y, Zhang Z, Kong G & Li P et al.2019 Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: a comparison with plasma total miRNAs. Journal of Extracellular Vesicles 8 1643670. (https://doi.org/10.1080/20013078.2019.1643670)

    • Search Google Scholar
    • Export Citation
  • Mizenko RR, Brostoff T, Rojalin T, Koster HJ, Swindell HS, Leiserowitz GS, Wang A & Carney RP 2021 Tetraspanins are unevenly distributed across single extracellular vesicles and bias sensitivity to multiplexed cancer biomarkers. Journal of Nanobiotechnology 19 250. (https://doi.org/10.1186/s12951-021-00987-1)

    • Search Google Scholar
    • Export Citation
  • Nikiforova MN, Tseng GC, Steward D, Diorio D & Nikiforov YE 2008 MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. Journal of Clinical Endocrinology and Metabolism 93 16001608. (https://doi.org/10.1210/jc.2007-2696)

    • Search Google Scholar
    • Export Citation
  • Oblak T, Perhavec A, Hocevar M & Peric B 2021 Reduction of overtreatment without reduction of overdiagnosis in patients with differentiated thyroid cancer: mission impossible. Langenbeck’s Archives of Surgery 406 20112017. (https://doi.org/10.1007/s00423-021-02216-7)

    • Search Google Scholar
    • Export Citation
  • Osti D, Del Bene M, Rappa G, Santos M, Matafora V, Richichi C, Faletti S, Beznoussenko GV, Mironov A & Bachi A et al.2019 Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clinical Cancer Research 25 266276. (https://doi.org/10.1158/1078-0432.CCR-18-1941)

    • Search Google Scholar
    • Export Citation
  • Pamedytyte D, Simanaviciene V, Dauksiene D, Leipute E, Zvirbliene A, Kazokaite M, Sarauskas V, Dauksa A, Verkauskiene R & Zilaitiene B 2019 SAT-LB096 relationship between microRNA expression levels and clinicopathological parameters and recurrence of papillary thyroid carcinoma. Journal of the Endocrine Society 3 SAT-LB096. (https://doi.org/10.1210/js.2019-SAT-LB096)

    • Search Google Scholar
    • Export Citation
  • Pan Q, Zhao J, Li M, Liu X, Xu Y, Li W, Wu S & Su Z 2020 Exosomal miRNAs are potential diagnostic biomarkers between malignant and benign thyroid nodules based on next-generation sequencing. Carcinogenesis 41 1824. (https://doi.org/10.1093/carcin/bgz160)

    • Search Google Scholar
    • Export Citation
  • Pogliaghi G 2021 Liquid biopsy in thyroid cancer: from circulating biomarkers to a new prospective of tumor monitoring and therapy. Minerva Endocrinology 46 4561. (https://doi.org/10.23736/S2724-6507.20.03339-8)

    • Search Google Scholar
    • Export Citation
  • Rappa G, Puglisi C, Santos MF, Forte S, Memeo L & Lorico A 2019 Extracellular vesicles from thyroid carcinoma: the new frontier of liquid biopsy. International Journal of Molecular Sciences 20 1114. (https://doi.org/10.3390/ijms20051114)

    • Search Google Scholar
    • Export Citation
  • Rezaei M, Khamaneh AM, Zarghami N, Vosoughi A & Hashemzadeh S 2019 Evaluating pre- and post-operation plasma miRNAs of papillary thyroid carcinoma (PTC) patients in comparison to benign nodules. BMC Cancer 19 690. (https://doi.org/10.1186/s12885-019-5849-0)

    • Search Google Scholar
    • Export Citation
  • Rosignolo F, Memeo L, Monzani F, Colarossi C, Pecce V, Verrienti A, Durante C, Grani G, Lamartina L & Forte S et al.2017 MicroRNA-based molecular classification of papillary thyroid carcinoma. International Journal of Oncology 50 17671777. (https://doi.org/10.3892/ijo.2017.3960)

    • Search Google Scholar
    • Export Citation
  • Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R & Leenhardt L 2017 European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. European Thyroid Journal 6 225237. (https://doi.org/10.1159/000478927)

    • Search Google Scholar
    • Export Citation
  • Samsonov R, Burdakov V, Shtam T, Radzhabovа Z, Vasilyev D, Tsyrlina E, Titov S, Ivanov M, Berstein L & Filatov M et al.2016 Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumour Biology 37 1201112021. (https://doi.org/10.1007/s13277-016-5065-3)

    • Search Google Scholar
    • Export Citation
  • Sanz-Rubio D, Martin-Burriel I, Gil A, Cubero P, Forner M, Khalyfa A & Marin JM 2018 Stability of circulating exosomal miRNAs in healthy subjects. Scientific Reports 8 10306. (https://doi.org/10.1038/s41598-018-28748-5)

    • Search Google Scholar
    • Export Citation
  • Schneider CA, Rasband WS & Eliceiri KW 2012 NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 671675. (https://doi.org/10.1038/nmeth.2089)

    • Search Google Scholar
    • Export Citation
  • Sondermann A, Andreghetto FM, Moulatlet AC, Da Silva Victor E, De Castro MG, Nunes FD, Brandao LG & Severino P 2015 MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer. Clinical and Experimental Metastasis 32 521530. (https://doi.org/10.1007/s10585-015-9724-3)

    • Search Google Scholar
    • Export Citation
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F & Atkin-Smith GK et al.2018 Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7 1535750. (https://doi.org/10.1080/20013078.2018.1535750)

    • Search Google Scholar
    • Export Citation
  • Tian F, Shen Y, Chen Z, Li R & Ge Q 2017 No significant difference between plasma miRNAs and plasma-derived exosomal miRNAs from healthy people. BioMed Research International 2017 1304816. (https://doi.org/10.1155/2017/1304816)

    • Search Google Scholar
    • Export Citation
  • Toraih EA, Elshazli RM, Trinh LN, Hussein MH, Attia AA, Ruiz EML, Zerfaoui M, Fawzy MS & Kandil E 2021 Diagnostic and prognostic performance of liquid biopsy-derived exosomal microRNAs in thyroid cancer patients: a systematic review and meta-analysis. Cancers 13 4295. (https://doi.org/10.3390/cancers13174295)

    • Search Google Scholar
    • Export Citation
  • Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M & Dal Maso L 2016 Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. New England Journal of Medicine 375 614617. (https://doi.org/10.1056/NEJMp1604412)

    • Search Google Scholar
    • Export Citation
  • Vergauwen G, Tulkens J, Pinheiro C, Avila Cobos F, Dedeyne S, De Scheerder MA, Vandekerckhove L, Impens F, Miinalainen I & Braems G et al.2021 Robust sequential biophysical fractionation of blood plasma to study variations in the biomolecular landscape of systemically circulating extracellular vesicles across clinical conditions. Journal of Extracellular Vesicles 10 e12122. (https://doi.org/10.1002/jev2.12122)

    • Search Google Scholar
    • Export Citation
  • Verweij FJ, Hyenne V, Van Niel G & Goetz JG 2019 Extracellular vesicles: catching the light in zebrafish. Trends in Cell Biology 29 770776. (https://doi.org/10.1016/j.tcb.2019.07.007)

    • Search Google Scholar
    • Export Citation
  • Vrancx C, Vadukul DM, Suelves N, Contino S, D’Auria L, Perrin F, Van Pesch V, Hanseeuw B, Quinton L & Kienlen-Campard PA-O 2021 Mechanism of cellular formation and in vivo seeding effects of hexameric β-amyloid assemblies. Molecular Neurobiology 58 66476669. (https://doi.org/10.1007/s12035-021-02567-8)

    • Search Google Scholar
    • Export Citation
  • Wang H, Peng R, Wang J, Qin Z & Xue L 2018 Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clinical Epigenetics 10 59. (https://doi.org/10.1186/s13148-018-0492-1)

    • Search Google Scholar
    • Export Citation
  • Wiklander OPB, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H & Seow Y et al.2015 Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles 4 26316. (https://doi.org/10.3402/jev.v4.26316)

    • Search Google Scholar
    • Export Citation
  • Wu F, Li F, Lin X, Xu F, Cui RR, Zhong JY, Zhu T, Shan SK, Liao XB & Yuan LQ et al.2019 Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocrine-Related Cancer 26 525538. (https://doi.org/10.1530/ERC-19-0008)

    • Search Google Scholar
    • Export Citation
  • Yoruker EE, Terzioglu D, Teksoz S, Uslu FE, Gezer U & Dalay N 2016 MicroRNA expression profiles in papillary thyroid carcinoma, benign thyroid nodules and healthy controls. Journal of Cancer 7 803809. (https://doi.org/10.7150/jca.13898)

    • Search Google Scholar
    • Export Citation
  • Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F, Zhang Y, Huang K, Li Y & Song E et al.2012 Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. Journal of Clinical Endocrinology and Metabolism 97 20842092. (https://doi.org/10.1210/jc.2011-3059)

    • Search Google Scholar
    • Export Citation
  • Zabegina L, Nazarova I, Knyazeva M, Nikiforova N, Slyusarenko M, Titov S, Vasilyev D, Sleptsov I & Malek A 2020 MiRNA let-7 from TPO(+) extracellular vesicles is a potential marker for a differential diagnosis of follicular thyroid nodules. Cells 9 1917. (https://doi.org/10.3390/cells9081917)

    • Search Google Scholar
    • Export Citation
  • Zaridze D, Maximovitch D, Smans M & Stilidi I 2021 Thyroid cancer overdiagnosis revisited. Cancer Epidemiology 74 102014. (https://doi.org/10.1016/j.canep.2021.102014)

    • Search Google Scholar
    • Export Citation
  • Zarkesh M, Zadeh-Vakili A, Akbarzadeh M, Nozhat Z, Fanaei SA, Hedayati M & Azizi F 2019 BRAF V600E mutation and microRNAs are helpful in distinguishing papillary thyroid malignant lesions: tissues and fine needle aspiration cytology cases. Life Sciences 223 166173. (https://doi.org/10.1016/j.lfs.2019.03.034)

    • Search Google Scholar
    • Export Citation
  • Zembska A, Jawiarczyk-Przybylowska A, Wojtczak B & Bolanowski M 2019 MicroRNA expression in the progression and aggressiveness of papillary thyroid carcinoma. Anticancer Research 39 3340. (https://doi.org/10.21873/anticanres.13077)

    • Search Google Scholar
    • Export Citation
  • Zhang A, Wang C, Lu H, Chen X, Ba Y, Zhang C & Zhang CY 2019 Altered serum microRNA profile may serve as an auxiliary tool for discriminating aggressive thyroid carcinoma from nonaggressive thyroid cancer and benign thyroid nodules. Disease Markers 2019 3717683. (https://doi.org/10.1155/2019/3717683)

    • Search Google Scholar
    • Export Citation
  • Zhao Z, Fan J, Hsu Y-MS, Lyon CJ, Ning B & Hu TY 2019 Extracellular vesicles as cancer liquid biopsies: from discovery, validation, to clinical application. Lab on a Chip 19 11141140. (https://doi.org/10.1039/c8lc01123k)

    • Search Google Scholar
    • Export Citation