Immunotherapy in aggressive pituitary tumors and carcinomas: a systematic review

in Endocrine-Related Cancer
View More View Less
  • 1 Inserm U1052, CNRS UMR5286, Claude Bernard Lyon 1 University, Cancer Research Center of Lyon, Lyon, France
  • | 2 Endocrinology Department, ‘C.I. Parhon’ National Institute of Endocrinology, Bucharest, Romania
  • | 3 Pathology Department, Reference Center for Rare Pituitary Diseases HYPO, ‘Groupement Hospitalier Est’ Hospices Civils de Lyon, Bron, France
  • | 4 Neurosurgery Department, Reference Center for Rare Pituitary Diseases HYPO, ‘Groupement Hospitalier Est’ Hospices Civils de Lyon, Bron, France
  • | 5 Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, ‘Groupement Hospitalier Est’ Hospices Civils de Lyon, Bron, France

Correspondence should be addressed to M D Ilie: mireladiana.ilie@gmail.com
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Once temozolomide has failed, there is no recommended treatment option for pituitary carcinomas and aggressive pituitary tumors. Immune-checkpoint inhibitors (ICIs) represent the most recent therapeutic avenue, having raised hope with the publication of the first successful case in 2018. Here, we present an overview of immunotherapy in pituitary carcinomas and aggressive pituitary tumors, starting with the rationale for using ICIs and the implications of tumor-infiltrating lymphocytes in anterior pituitary tumors, followed by a systematic review of all published cases, analyzing both treatment response and potential predictors of response and finishing with research and clinical perspectives. Seven corticotroph and four lactotroph tumors have been so far treated with ICIs. Corticotroph tumors showed radiological partial response in 57% of cases, followed by stable disease in 29% of cases, which was accompanied by biochemical partial or complete response in 83% of cases. Half of lactotroph tumors showed radiological complete or partial response, accompanied by biochemical complete response in 33% of the cases. In the case of a dissociate response, continuation of immunotherapy combined with local treatment represents a good option. At this time, a high tumor mutational burden appears to be the most promising predictive marker of response. MMR deficiency does not guarantee a response. Negative PD-L1 staining should not preclude ICIs administration. Therefore, ICIs are a promising option after temozolomide failure. This review highlights key clinical aspects that can already be implemented into practice and also discusses tumor biology concepts and perspectives expected to improve immunotherapy outcomes.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1713 1713 868
Full Text Views 67 67 22
PDF Downloads 67 67 30
  • Adashek JJ, Subbiah IM, Matos I, Garralda E, Menta AK, Ganeshan DM & Subbiah V 2020 Hyperprogression and immunotherapy: fact, fiction, or alternative fact? Trends in Cancer 6 181191. (https://doi.org/10.1016/j.trecan.2020.01.005)

    • Search Google Scholar
    • Export Citation
  • Aldridge S & Teichmann SA 2020 Single cell transcriptomics comes of age. Nature Communications 11 4307. (https://doi.org/10.1038/s41467-020-18158-5)

  • Balkwill FR, Capasso M & Hagemann T 2012 The tumor microenvironment at a glance. Journal of Cell Science 125 55915596. (https://doi.org/10.1242/jcs.116392)

    • Search Google Scholar
    • Export Citation
  • Barry S, Carlsen E, Marques P, Stiles CE, Gadaleta E, Berney DM, Roncaroli F, Chelala C, Solomou A & Herincs M et al.2019 Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 38 53815395. (https://doi.org/10.1038/s41388-019-0779-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burman P, Lamb L & McCormack A 2020 Temozolomide therapy for aggressive pituitary tumours-current understanding and future perspectives. Reviews in Endocrine and Metabolic Disorders 21 263276. (https://doi.org/10.1007/s11154-020-09551-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caccese M, Barbot M, Ceccato F, Padovan M, Gardiman MP, Fassan M, Denaro L, Emanuelli E, D’Avella D, Scaroni C, et al.2020 Rapid disease progression in patient with mismatch-repair deficiency pituitary ACTH-secreting adenoma treated with checkpoint inhibitor pembrolizumab. Anti-Cancer Drugs 31 199204. (https://doi.org/10.1097/CAD.0000000000000856)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castinetti F, Albarel F, Archambeaud F, Bertherat J, Bouillet B, Buffier P, Briet C, Cariou B, Caron P, Chabre O, et al.2019 French Endocrine Society Guidance on endocrine side effects of immunotherapy. Endocrine-Related Cancer 26 G1G18. (https://doi.org/10.1530/ERC-18-0320)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, Chaput N, Eggermont A, Marabelle A, Soria JC, et al.2017 Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clinical Cancer Research 23 19201928. (https://doi.org/10.1158/1078-0432.CCR-16-1741)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cui Y, Li C, Jiang Z, Zhang S, Li Q, Liu X, Zhou Y, Li R, Wei L, Li L, et al.2021 Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumors. Neuro-Oncology 23 18591871. (https://doi.org/10.1093/neuonc/noab102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dai C, Liang S, Sun B, Li Y & Kang J 2021 Anti-VEGF therapy in refractory pituitary adenomas and pituitary carcinomas: a review. Frontiers in Oncology 11 773905. (https://doi.org/10.3389/fonc.2021.773905)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis AA & Patel VG 2019 The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. Journal for ImmunoTherapy of Cancer 7 278. (https://doi.org/10.1186/s40425-019-0768-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR & Fu YX 2014 Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. Journal of Clinical Investigation 124 687695. (https://doi.org/10.1172/JCI67313)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duhamel C, Ilie MD, Salle H, Nassouri AS, Gaillard S, Deluche E, Assaker R, Mortier L, Cortet C & Raverot G 2020 Immunotherapy in corticotroph and lactotroph aggressive tumors and carcinomas: two case reports and a review of the literature. Journal of Personalized Medicine 10 88. (https://doi.org/10.3390/jpm10030088)

    • Search Google Scholar
    • Export Citation
  • Fridman WH, Zitvogel L, Sautès-Fridman C & Kroemer G 2017 The immune contexture in cancer prognosis and treatment. Nature Reviews: Clinical Oncology 14 717734. (https://doi.org/10.1038/nrclinonc.2017.101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goichot B, Taquet MC, Baltzinger P, Baloglu S, Gravaud M, Malouf GG, Noël G & Imperiale A 2021 Should pituitary carcinoma be treated using a NET‐like approach? A case of complete remission of a metastatic malignant prolactinoma with multimo dal therapy including immunotherapy. Clinical Endocrinology [epub]. (https://doi.org/10.1111/cen.14645)

    • Search Google Scholar
    • Export Citation
  • Heshmati HM, Kujas M, Casanova S, Wollan PC, Racadot J, Effenterre RV, Derome PJ & Turpin G 1998 Prevalence of lymphocytic infiltrate in 1400 pituitary adenomas. Endocrine Journal 45 357361. (https://doi.org/10.1507/endocrj.45.357)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, Huse JT, de Groot J, Li S, Overwijk WW, et al.2017 Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-Oncology 19 10471057. (https://doi.org/10.1093/neuonc/nox026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hui L & Chen Y 2015 Tumor microenvironment: sanctuary of the devil. Cancer Letters 368 713. (https://doi.org/10.1016/j.canlet.2015.07.039)

  • Iacovazzo D, Chiloiro S, Carlsen E, Bianchi A, Giampietro A, Tartaglione T, Bima C, Bracaccia ME, Lugli F, Lauretti L, et al.2020 Tumour-infiltrating cytotoxic T lymphocytes in somatotroph pituitary neuroendocrine tumours. Endocrine 67 651658. (https://doi.org/10.1007/s12020-019-02145-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iglesias P, Sánchez JC & Díez JJ 2021 Isolated ACTH deficiency induced by cancer immunotherapy: a systematic review. Pituitary 24 630643. (https://doi.org/10.1007/s11102-021-01141-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ilie MD & Raverot G 2020 Treatment options for gonadotroph tumors: current state and perspectives. Journal of Clinical Endocrinology and Metabolism 105 dgaa497. (https://doi.org/10.1210/clinem/dgaa497)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ilie MD, Lasolle H & Raverot G 2019a Emerging and novel treatments for pituitary tumors. Journal of Clinical Medicine 8 117. (https://doi.org/10.3390/jcm8081107)

    • Search Google Scholar
    • Export Citation
  • Ilie MD, Vasiljevic A, Raverot G & Bertolino P 2019b The microenvironment of pituitary tumors—biological and therapeutic implications. Cancers 11 1605. (https://doi.org/10.3390/cancers11101605)

    • Search Google Scholar
    • Export Citation
  • Ilie MD, Jouanneau E & Raverot G 2020 Aggressive pituitary adenomas and carcinomas. Endocrinology and Metabolism Clinics of North America 49 505515. (https://doi.org/10.1016/j.ecl.2020.05.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inno A, Roviello G, Ghidini A, Luciani A, Catalano M, Gori S & Petrelli F 2021 Rechallenge of immune checkpoint inhibitors: a systematic review and meta-analysis. Critical Reviews in Oncology/Hematology 165 103434. (https://doi.org/10.1016/j.critrevonc.2021.103434)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jacobs JFM, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P, Grotenhuis JA, Hoogerbrugge PM, de Vries IJM & Adema GJ 2009 Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-Oncology 11 394402. (https://doi.org/10.1215/15228517-2008-104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kemeny HR, Elsamadicy AA, Farber SH, Champion CD, Lorrey SJ, Chongsathidkiet P, Woroniecka KI, Cui X, Shen SH, Rhodin KE, et al.2020 Targeting PD-L1 initiates effective antitumor immunity in a murine model of Cushing disease. Clinical Cancer Research 26 11411151. (https://doi.org/10.1158/1078-0432.CCR-18-3486)

    • Search Google Scholar
    • Export Citation
  • Lamb LS, Sim HW & McCormack AI 2020 Case report: a case of pituitary carcinoma treated with sequential dual immunotherapy and vascular endothelial growth factor inhibition therapy. Frontiers in Endocrinology 11 576027. (https://doi.org/10.3389/fendo.2020.576027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lemery S, Keegan P & Pazdur R 2017 First FDA approval agnostic of cancer site-when a biomarker defines the indication. New England Journal of Medicine 377 14091412. (https://doi.org/10.1056/NEJMp1709968)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin AL, Jonsson P, Tabar V, Yang TJ, Cuaron J, Beal K, Cohen M, Postow M, Rosenblum M, Shia J, et al.2018 Marked response of a hypermutated ACTH-secreting pituitary carcinoma to ipilimumab and Nivolumab. Journal of Clinical Endocrinology and Metabolism 103 39253930. (https://doi.org/10.1210/jc.2018-01347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin AL, Tabar V, Young RJ, Cohen M, Cuaron J, Yang TJ, Rosenblum M, Rudneva VA, Geer EB & Bodei L 2021 Synergism of checkpoint inhibitors and peptide receptor radionuclide therapy in the treatment of pituitary carcinoma. Journal of the Endocrine Society 5 bvab133. (https://doi.org/10.1210/jendso/bvab133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu JQ, Adam B, Jack AS, Lam A, Broad RW & Chik CL 2015 Immune cell infiltrates in pituitary adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocrine Pathology 26 263272. (https://doi.org/10.1007/s12022-015-9383-6)

    • Search Google Scholar
    • Export Citation
  • Lupi I, Manetti L, Caturegli P, Menicagli M, Cosottini M, Iannelli A, Acerbi G, Bevilacqua G, Bogazzi F & Martino E 2010 Tumor infiltrating lymphocytes but not serum pituitary antibodies are associated with poor clinical outcome after surgery in patients with pituitary adenoma. Journal of Clinical Endocrinology and Metabolism 95 289296. (https://doi.org/10.1210/jc.2009-1583)

    • Search Google Scholar
    • Export Citation
  • Ma HS, Wang EL, Xu WF, Yamada S, Yoshimoto K, Qian ZR, Shi L, Liu LL & Li XH 2018 Overexpression of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A) is associated with aggressive behavior and hypermethylation of tumor suppressor genes in human pituitary adenomas. Medical Science Monitor 24 48414850. (https://doi.org/10.12659/MSM.910608)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Majd N, Waguespack SG, Janku F, Fu S, Penas-Prado M, Xu M, Alshawa A, Kamiya-Matsuoka C, Raza SM, McCutcheon IE, et al.2020 Efficacy of pembrolizumab in patients with pituitary carcinoma: report of four cases from a phase II study. Journal for ImmunoTherapy of Cancer 8 e001532. (https://doi.org/10.1136/jitc-2020-001532)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, et al.2019 Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathologica Communications 7 172. (https://doi.org/10.1186/s40478-019-0830-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCormack A, Dekkers OM, Petersenn S, Popovic V, Trouillas J, Raverot G, Burman P & ESE survey collaborators 2018 Treatment of aggressive pituitary tumours and carcinomas: results of a European Society of Endocrinology (ESE) Survey 2016. European Journal of Endocrinology 178 265276. (https://doi.org/10.1530/EJE-17-0933)

    • Search Google Scholar
    • Export Citation
  • McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, Jonasch E, Khasraw M, Heimberger AB, Lim B, et al.2021 High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Annals of Oncology 32 661672. (https://doi.org/10.1016/j.annonc.2021.02.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mei Y, Bi WL, Greenwald NF, Du Z, Agar NYR, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, et al.2016 Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 7 7656576576. (https://doi.org/10.18632/oncotarget.12088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H & Guo AY 2020 ImmuCellAI: a unique method for comprehensive T‐cell subsets abundance prediction and its application in cancer immunotherapy. Advanced Science 7 1902880. (https://doi.org/10.1002/advs.201902880)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, et al.2019 Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 37 773782. (https://doi.org/10.1038/s41587-019-0114-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Postow MA 2015 Managing immune checkpoint-blocking antibody side effects. American Society of Clinical Oncology Educational Book 35 7683. (https://doi.org/10.14694/EdBook_AM.2015.35.76)

    • Search Google Scholar
    • Export Citation
  • Principe M, Chanal M, Ilie MD, Ziverec A, Vasiljevic A, Jouanneau E, Hennino A, Raverot G & Bertolino P 2020 Immune landscape of pituitary neuroendocrine tumours reveals association between macrophages and gonadotroph-tumour invasion. Journal of Clinical Endocrinology and Metabolism 105 dgaa520. (https://doi.org/10.1210/clinem/dgaa520)

    • Search Google Scholar
    • Export Citation
  • Rahma OE & Hodi FS 2019 The intersection between tumor angiogenesis and immune suppression. Clinical Cancer Research 25 54495457. (https://doi.org/10.1158/1078-0432.CCR-18-1543)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramjiawan RR, Griffioen AW & Duda DG 2017 Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis 20 185204. (https://doi.org/10.1007/s10456-017-9552-y)

    • Search Google Scholar
    • Export Citation
  • Raverot G, Burman P, McCormack A, Heaney A, Petersenn S, Popovic V, Trouillas J, Dekkers OM & European Society of Endocrinology 2018 European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. European Journal of Endocrinology 178 G1G24. (https://doi.org/10.1530/EJE-17-0796)

    • Search Google Scholar
    • Export Citation
  • Raverot G, Ilie MD, Lasolle H, Amodru V, Trouillas J, Castinetti F & Brue T 2021 Aggressive pituitary tumours and pituitary carcinomas. Nature Reviews: Endocrinology 17 671684. (https://doi.org/10.1038/s41574-021-00550-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robert C 2020 A decade of immune-checkpoint inhibitors in cancer therapy. Nature Communications 11 3801. (https://doi.org/10.1038/s41467-020-17670-y)

  • Rossi ML, Jones NR, Esiri MM, Havas L, Izzi M & Coakham HB 1990 Mononuclear cell infiltrate and Hla-Dr expression in 28 pituitary adenomas. Tumori 76 543547. (https://doi.org/10.1177/030089169007600605)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sato M, Tamura R, Tamura H, Mase T, Kosugi K, Morimoto Y, Yoshida K & Toda M 2019 Analysis of tumor angiogenesis and immune microenvironment in non-functional pituitary endocrine tumors. Journal of Clinical Medicine 8 112. (https://doi.org/10.3390/jcm8050695)

    • Search Google Scholar
    • Export Citation
  • Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, Lin NU, Litière S, Dancey J, Chen A, et al.2017 iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet: Oncology 18 e143e152. (https://doi.org/10.1016/S1470-2045(1730074-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen P, Han L, Ba X, Qin K & Tu S 2021 Hyperprogressive disease in cancers treated with immune checkpoint inhibitors. Frontiers in Pharmacology 12 678409. (https://doi.org/10.3389/fphar.2021.678409)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sol B, de Filette JMK, Awada G, Raeymaeckers S, Aspeslagh S, Andreescu CE, Neyns B & Velkeniers B 2020 Immune checkpoint inhibitor therapy for ACTH-secreting pituitary carcinoma: a new emerging treatment? European Journal of Endocrinology 184 K1K5. (https://doi.org/10.1530/EJE-20-0151)

    • Search Google Scholar
    • Export Citation
  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al.2014 PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515 568571. (https://doi.org/10.1038/nature13954)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang PF, Wang TJ, Yang YK, Yao K, Li Z, Li YM & Yan CX 2018 The expression profile of PD-L1 and CD8+ lymphocyte in pituitary adenomas indicating for immunotherapy. Journal of Neuro-Oncology 139 8995. (https://doi.org/10.1007/s11060-018-2844-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Z, Guo X, Gao L, Deng K, Lian W, Bao X, Feng M, Duan L, Zhu H & Xing B 2020 The immune profile of pituitary adenomas and a novel immune classification for predicting immunotherapy responsiveness. Journal of Clinical Endocrinology and Metabolism 105 e3207e3223. (https://doi.org/10.1210/clinem/dgaa449)

    • Search Google Scholar
    • Export Citation
  • Wilky BA 2019 Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunological Reviews 290 623. (https://doi.org/10.1111/imr.12766)

  • Yagnik G, Rutkowski MJ, Shah SS & Aghi MK 2019 Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget 10 22122223. (https://doi.org/10.18632/oncotarget.26775)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yeung JT, Vesely MD & Miyagishima DF 2020 In silico analysis of the immunological landscape of pituitary adenomas. Journal of Neuro-Oncology 147 595598. (https://doi.org/10.1007/s11060-020-03476-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang D, Hugo W, Redublo P, Miao H, Bergsneider M, Wang MB, Kim W, Yong WH & Heaney AP 2021 A human ACTH-secreting corticotroph tumoroid model: novel human ACTH-secreting tumor cell in vitro model. EBiomedicine 66 103294. (https://doi.org/10.1016/j.ebiom.2021.103294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhuo M, Chi Y & Wang Z 2020 The adverse events associated with combination immunotherapy in cancers: challenges and chances. Asia-Pacific Journal of Clinical Oncology 16 e154e159. (https://doi.org/10.1111/ajco.13365)

    • PubMed
    • Search Google Scholar
    • Export Citation