Despite the successful combination of therapies improving survival of estrogen receptor α (ER+) breast cancer patients with metastatic disease, mechanisms for acquired endocrine resistance remain to be fully elucidated. The RNA binding protein HNRNPA2B1 (A2B1), a reader of N(6)-methyladenosine (m6A) in transcribed RNA, is upregulated in endocrine-resistant, ER+ LCC9 and LY2 cells compared to parental MCF-7 endocrine-sensitive luminal A breast cancer cells. The miRNA-seq transcriptome of MCF-7 cells overexpressing A2B1 identified the serine metabolic processes pathway. Increased expression of two key enzymes in the serine synthesis pathway (SSP), phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate dehydrogenase (PHGDH), correlates with poor outcomes in ER+ breast patients who received tamoxifen (TAM). We reported that PSAT1 and PHGDH were higher in LCC9 and LY2 cells compared to MCF-7 cells and their knockdown enhanced TAM sensitivity in these-resistant cells. Here we demonstrate that stable, modest overexpression of A2B1 in MCF-7 cells increased PSAT1 and PHGDH and endocrine resistance. We identified four miRNAs downregulated in MCF-7-A2B1 cells that directly target the PSAT1 3′UTR (miR-145-5p and miR-424-5p), and the PHGDH 3′UTR (miR-34b-5p and miR-876-5p) in dual luciferase assays. Lower expression of miR-145-5p and miR-424-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PSAT1 and lower expression of miR-34b-5p and miR-876-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PHGDH. Transient transfection of these miRNAs restored endocrine-therapy sensitivity in LCC9 and ZR-75-1-4-OHT cells. Overall, our data suggest a role for decreased A2B1-regulated miRNAs in endocrine resistance and upregulation of the SSP to promote tumor progression in ER+ breast cancer.
Endocrine-Related Cancer is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 189 | 128 | 10 |
PDF Downloads | 194 | 123 | 12 |
Abderrahman B & & Jordan VC 2022 Estrogen for the treatment and prevention of breast cancer: a tale of 2 Karnofsky lectures. Cancer Journal 28 163–168. (https://doi.org/10.1097/PPO.0000000000000600)
Alarcon CR, Lee H, Goodarzi H, Halberg N & & Tavazoie SF 2015a N6-methyladenosine marks primary microRNAs for processing. Nature 519 482–485. (https://doi.org/10.1038/nature14281)
Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S & & Tavazoie SF 2015b HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162 1299–1308. (https://doi.org/10.1016/j.cell.2015.08.011)
Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, Frandsen T, Spang-Thomsen M, Fuqua SA & & Clarke R 1997 MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Research 57 3486–3493.
Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH, et al.2012 Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491 458–462. (https://doi.org/10.1038/nature11540)
Chen Q, Wang H, Li Z, Li F, Liang L, Zou Y, Shen H, Li J, Xia Y, Cheng Z, et al.2022 Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. Journal of Hepatology 76 135–147. (https://doi.org/10.1016/j.jhep.2021.08.027)
Cheng T, Huang F, Zhang Y & & Zhou Z 2023 Knockdown of circGOLPH3 inhibits cell progression and glycolysis by targeting miR-145-5p/lysine demethylase 2A (KDM2A) axis in oral squamous cell carcinoma. Head and Neck 45 225–236. (https://doi.org/10.1002/hed.27229)
Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, et al.2015 Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163 506–519. (https://doi.org/10.1016/j.cell.2015.09.033)
Clarke R, Tyson JJ & & Dixon JM 2015 Endocrine resistance in breast cancer--an overview and update. Molecular and Cellular Endocrinology 418 220–234. (https://doi.org/10.1016/j.mce.2015.09.035)
Crawford AC, Riggins RB, Shajahan AN, Zwart A & & Clarke R 2010 Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS One 5 e8604. (https://doi.org/10.1371/journal.pone.0008604)
Cui L, Huang C & & Zhou D 2023 Overexpression of circCDR1as drives oral squamous cell carcinoma progression. Oral Diseases 29 957–967. (https://doi.org/10.1111/odi.14085)
Dastmalchi N, Hosseinpourfeizi MA, Khojasteh SMB, Baradaran B & & Safaralizadeh R 2020 Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/PI3K/AKT/mTOR signaling pathway. Life Sciences 259 118239. (https://doi.org/10.1016/j.lfs.2020.118239)
Davidson NE, Bronzert DA, Chambon P, Gelmann EP & & Lippman ME 1986 Use of two MCF-7 cell variants to evaluate the growth regulatory potential of estrogen-induced products. Cancer Research 46 1904–1908.
Davis JL, Fallon HJ & & Morris HP 1970 Two enzymes of serine metabolism in rat liver and hepatomas. Cancer Research 30 2917–2920.
De Marchi T, Timmermans MA, Sieuwerts AM, Smid M, Look MP, Grebenchtchikov N, Sweep FCGJ, Smits JG, Magdolen V, van Deurzen CHM, et al.2017 Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer. Scientific Reports 7 2099. (https://doi.org/10.1038/s41598-017-02296-w)
DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D, Tang H, Xie Y, Asara JM, Huffman KE, et al.2015 NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nature Genetics 47 1475–1481. (https://doi.org/10.1038/ng.3421)
Ding R, Hong W, Huang L, Shao J, Yu W & & Xu X 2022 Examination of the effects of microRNA-145-5p and phosphoserine aminotransferase 1 in colon cancer. Bioengineered 13 12794–12806. (https://doi.org/10.1080/21655979.2022.2071010)
Dong G, Pan T, Zhou D, Li C, Liu J & & Zhang J 2019a FBXL19-AS1 promotes cell proliferation and inhibits cell apoptosis via miR-876-5p/FOXM1 axis in breast cancer. Acta Biochimica et Biophysica Sinica 51 1106–1113. (https://doi.org/10.1093/abbs/gmz110)
Dong N, Guo J, Han S, Bao L, Diao Y & & Lin Z 2019b Positive feedback loop of lncRNA HOXC-AS2/miR-876-5p/ZEB1 to regulate EMT in glioma. OncoTargets and Therapy 12 7601–7609. (https://doi.org/10.2147/OTT.S216134)
Dong L, Chen F, Fan Y & & Long J 2020 MiR-34b-5p inhibits cell proliferation, migration and invasion through targeting ARHGAP1 in breast cancer. American Journal of Translational Research 12 269–280.
Dong M, Xu T, Li H & & Li X 2021 LINC00052 promotes breast cancer cell progression and metastasis by sponging miR-145-5p to modulate TGFBR2 expression. Oncology Letters 21 368. (https://doi.org/10.3892/ol.2021.12629)
Dowsett M, Martin LA, Smith I & & Johnston S 2005 Mechanisms of resistance to aromatase inhibitors. Journal of Steroid Biochemistry and Molecular Biology 95 167–172. (https://doi.org/10.1016/j.jsbmb.2005.04.022)
Egeland NG, Lunde S, Jonsdottir K, Lende TH, Cronin-Fenton D, Gilje B, Janssen EA & & Soiland H 2015 The role of microRNAs as predictors of response to tamoxifen treatment in breast cancer patients. International Journal of Molecular Sciences 16 24243–24275. (https://doi.org/10.3390/ijms161024243)
Fallah Y, Brundage J, Allegakoen P & & Shajahan-Haq AN 2017 MYC-driven pathways in breast cancer subtypes. Biomolecules 7 53. (https://doi.org/10.3390/biom7030053)
Fan P & & Jordan VC 2019 New insights into acquired endocrine resistance of breast cancer. Cancer Drug Resistance 2 198–209. (https://doi.org/10.20517/cdr.2019.13)
Fang Y, Liang X, Xu J & & Cai X 2018 miR-424 targets AKT3 and PSAT1 and has a tumor-suppressive role in human colorectal cancer. Cancer Management and Research 10 6537–6547. (https://doi.org/10.2147/CMAR.S185789)
Gao S, Ge A, Xu S, You Z, Ning S, Zhao Y & & Pang D 2017 PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3beta/beta-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. Journal of Experimental and Clinical Cancer Research 36 179. (https://doi.org/10.1186/s13046-017-0648-4)
Geck RC & & Toker A 2016 Nonessential amino acid metabolism in breast cancer. Advances in Biological Regulation 62 11–17. (https://doi.org/10.1016/j.jbior.2016.01.001)
Goldman A, Harper S & & Speicher DW 2016 Detection of proteins on blot membranes. Current Protocols in Protein Science 86. (https://doi.org/10.1002/cpps.15)
Gong Z, Shen P, Wang H, Zhu J, Liang K, Wang K, Mi Y, Shen S, Fang X & & Liu G 2023 A novel circular RNA circRBMS3 regulates proliferation and metastasis of osteosarcoma by targeting miR-424-eIF4B/YRDC axis. Aging (Albany NY) 15 1564–1590. (https://doi.org/10.18632/aging.204567)
Guo Q, Li L, Bo Q, Chen L, Sun L & & Shi H 2020a Long noncoding RNA PITPNA-AS1 promotes cervical cancer progression through regulating the cell cycle and apoptosis by targeting the miR-876-5p/c-MET axis. Biomedicine and Pharmacotherapy 128 110072. (https://doi.org/10.1016/j.biopha.2020.110072)
Guo X, Zhou Q, Su D, Luo Y, Fu Z, Huang L, Li Z, Jiang D, Kong Y, Li Z, et al.2020b Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Molecular Cancer 19 83. (https://doi.org/10.1186/s12943-020-01196-4)
Guo J, Ye F, Xie W, Zhang X, Zeng R, Sheng W, Mi Y & & Sheng X 2022 The HOXC-AS2/miR-876-5p/HKDC1 axis regulates endometrial cancer progression in a high glucose-related tumor microenvironment. Cancer Science 113 2297–2310. (https://doi.org/10.1111/cas.15384)
Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q & & Szallasi Z 2010 An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Research and Treatment 123 725–731. (https://doi.org/10.1007/s10549-009-0674-9)
Hanker AB, Sudhan DR & & Arteaga CL 2020 Overcoming endocrine resistance in breast cancer. Cancer Cell 37 496–513. (https://doi.org/10.1016/j.ccell.2020.03.009)
He S, Yu G, Peng K & & Liu S 2020 MicroRNA1455p suppresses fascin to inhibit the invasion and migration of cervical carcinoma cells. Molecular Medicine Reports 22 5282–5292. (https://doi.org/10.3892/mmr.2020.11592)
Heinonen M, Fagerholm R, Aaltonen K, Kilpivaara O, Aittomäki K, Blomqvist C, Heikkilä P, Haglund C, Nevanlinna H & & Ristimäki A 2007 Prognostic role of HuR in hereditary breast cancer. Clinical Cancer Research 13 6959–6963. (https://doi.org/10.1158/1078-0432.CCR-07-1432)
Hua JT, Chen S & & He HH 2019 Landscape of noncoding RNA in prostate cancer. Trends in Genetics 35 840–851. (https://doi.org/10.1016/j.tig.2019.08.004)
Ji JH, Bae SJ, Kim K, Chu C, Lee KA, Kim Y, Kim JH, Jeong J & & Ahn SG 2022 Association between TP53 mutation and high 21-gene recurrence score in estrogen receptor-positive/HER2-negative breast cancer. NPJ Breast Cancer 8 19. (https://doi.org/10.1038/s41523-022-00384-3)
Jordan VC 2015 The new biology of estrogen-induced apoptosis applied to treat and prevent breast cancer. Endocrine-Related Cancer 22 R1–R31. (https://doi.org/10.1530/ERC-14-0448)
Jun DY, Park HS, Lee JY, Baek JY, Park HK, Fukui K & & Kim YH 2008 Positive regulation of promoter activity of human 3-phosphoglycerate dehydrogenase (PHGDH) gene is mediated by transcription factors Sp1 and NF-Y. Gene 414 106–114. (https://doi.org/10.1016/j.gene.2008.02.018)
Kadkhoda S, Ghafouri-Fard S, Noorbakhsh F, Ravaei S, Darbeheshti F, Amoli MM, Taslimi R & & Shakoori A 2022 The importance of regulatory pathway mediated by Circ0001955 in colorectal cancer. Experimental and Molecular Pathology 128 104819. (https://doi.org/10.1016/j.yexmp.2022.104819)
Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW, et al.2007 The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Molecular Oncology 1 84–96. (https://doi.org/10.1016/j.molonc.2007.02.004)
Kisanga ER, Gjerde J, Guerrieri-Gonzaga A, Pigatto F, Pesci-Feltri A, Robertson C, Serrano D, Pelosi G, Decensi A & & Lien EA 2004 Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clinical Cancer Research 10 2336–2343. (https://doi.org/10.1158/1078-0432.ccr-03-0538)
Klinge CM 2015 Estrogen action: receptors, transcripts, cell signaling, and non-coding RNAs in normal physiology and disease. Molecular and Cellular Endocrinology 418 191–192. (https://doi.org/10.1016/j.mce.2015.11.028)
Klinge CM, Piell KM, Tooley CS & & Rouchka EC 2019 HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Scientific Reports 9 9430. (https://doi.org/10.1038/s41598-019-45636-8)
Lee SK, Park KK, Kim HJ, Park J, Son SH, Kim KR & & Chung WY 2017 Human antigen R-regulated CCL20 contributes to osteolytic breast cancer bone metastasis. Scientific Reports 7 9610. (https://doi.org/10.1038/s41598-017-09040-4)
Lei J, Zhu J, Hui B, Jia C, Yan X, Jiang T & & Wang X 2023 Circ-HSP90A expedites cell growth, stemness, and immune evasion in non-small cell lung cancer by regulating STAT3 signaling and PD-1/PD-L1 checkpoint. Cancer Immunology, Immunotherapy 72 101–124. (https://doi.org/10.1007/s00262-022-03235-z)
Lewis-Wambi JS & & Jordan VC 2009 Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Research 11 206. (https://doi.org/10.1186/bcr2255)
Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, Liu D, Wang M, Wang L, Zeng F, et al.2017 CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Reports 18 1646–1659. (https://doi.org/10.15252/embr.201643581)
Li Y, Liu J, Hu W, Zhang Y, Sang J, Li H, Ma T, Bo Y, Bai T, Guo H, et al.2019 miR-424-5p promotes proliferation, migration and invasion of laryngeal squamous cell carcinoma. OncoTargets and Therapy 12 10441–10453. (https://doi.org/10.2147/OTT.S224325)
Li Q, Tian Y, Liang Y & & Li C 2020a CircHIPK3/miR-876-5p/PIK3R1 axis regulates regulation proliferation, migration, invasion, and glutaminolysis in gastric cancer cells. Cancer Cell International 20 391. (https://doi.org/10.1186/s12935-020-01455-w)
Li Z, Xie X, Fan X & & Li X 2020b Long non-coding RNA MINCR regulates miR-876-5p/GSPT1 axis to aggravate glioma progression. Neurochemical Research 45 1690–1699. (https://doi.org/10.1007/s11064-020-03029-8)
Li WJ, Li G, Liu ZW, Chen ZY & & Pu R 2021a LncRNA LINC00355 promotes EMT and metastasis of bladder cancer cells through the miR-424-5p/HMGA2 axis. Neoplasma 68 1225–1235. (https://doi.org/10.4149/neo_2021_210427N574)
Li X, Gracilla D, Cai L, Zhang M, Yu X, Chen X, Zhang J, Long X, Ding HF & & Yan C 2021b ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction. Cell Reports 36 109706. (https://doi.org/10.1016/j.celrep.2021.109706)
Li S, Zhang Y, He Z, Xu Q, Li C & & Xu B 2022 Knockdown of circMYOF inhibits cell growth, metastasis, and glycolysis through miR-145-5p/OTX1 regulatory axis in laryngeal squamous cell carcinoma. Functional and Integrative Genomics 22 1–13. (https://doi.org/10.1007/s10142-022-00862-8)
Liao Z, Zhang H, Su C, Liu F, Liu Y, Song J, Zhu H, Fan Y, Zhang X, Dong W, et al.2021 Long noncoding RNA SNHG14 promotes hepatocellular carcinoma progression by regulating miR-876-5p/SSR2 axis. Journal of Experimental and Clinical Cancer Research 40 36. (https://doi.org/10.1186/s13046-021-01838-5)
Liao Y, Liao Y, Li J, Li Y & & Fan Y 2023 The prognostic role of HuR varies between different subtypes of breast cancer patients: data mining and retrospective analysis. Breast Cancer (Tokyo, Japan) 15 135–146. (https://doi.org/10.2147/BCTT.S395984)
Lin J, McRoy L, Fisher MD, Hu N, Davis C, Mitra D & & Walker MS 2021a Treatment patterns and clinical outcomes with palbociclib-based therapy received in US community oncology practices. Future Oncology 17 1001–1011. (https://doi.org/10.2217/fon-2020-0744)
Lin S, Lin Y, Wu Z, Xia W, Miao C, Peng T, Zhao Z, Ji C, Mo Z, Liu X, et al.2021b circRPS16 promotes proliferation and invasion of hepatocellular carcinoma by sponging miR-876-5p to upregulate SPINK1. Frontiers in Oncology 11 724415. (https://doi.org/10.3389/fonc.2021.724415)
Locasale JW 2013 Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature Reviews. Cancer 13 572–583. (https://doi.org/10.1038/nrc3557)
Lu Q, Che H, Che Y & & Hu M 2023 CircZNF236 facilitates malignant progression in oral squamous cell carcinoma by sequestering miR-145-5p. Clinical and Translational Oncology 25 1690–1701. (https://doi.org/10.1007/s12094-022-03064-7)
Luo G, Zhang Y, Wu Z, Zhang L, Liang C & & Chen X 2021 Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell resistance to cisplatin by regulating miR-34b-5p/ABCB1 axis. Acta Biochimica et Biophysica Sinica 53 558–566. (https://doi.org/10.1093/abbs/gmab023)
Luo X, Ge J, Liu J, Liu Z, Bi C & & Lan S 2022 TFCP2, a binding protein of ATF3, promotes the progression of glioma by activating the synthesis of serine. Experimental Cell Research 416 113136. (https://doi.org/10.1016/j.yexcr.2022.113136)
Ma LL, Liang L, Zhou D & & Wang SW 2021 Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma 68 165–173. (https://doi.org/10.4149/neo_2020_200707N705)
Martens JW, Nimmrich I, Koenig T, Look MP, Harbeck N, Model F, Kluth A, Bolt-de Vries J, Sieuwerts AM, Portengen H, et al.2005a Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Research 65 4101–4117. (https://doi.org/10.1158/0008-5472.CAN-05-0064)
Martens JWM, Nimmrich I, Koenig T, Look MP, Harbeck N, Model F, Kluth A, Bolt-de Vries J, Sieuwerts AM, Portengen H, et al.2005b Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Research 65 4101–4117. (https://doi.org/10.1158/0008-5472.CAN-05-0064)
Mascia F, Mazo I, Alterovitz WL, Karagiannis K, Wu WW, Shen RF, Beaver JA & & Rao VA 2022 In search of autophagy biomarkers in breast cancer: receptor status and drug agnostic transcriptional changes during autophagy flux in cell lines. PLoS One 17 e0262134. (https://doi.org/10.1371/journal.pone.0262134)
Metcalf S, Dougherty S, Kruer T, Hasan N, Biyik-Sit R, Reynolds L & & Clem BF 2020a Selective loss of phosphoserine aminotransferase 1 (PSAT1) suppresses migration, invasion, and experimental metastasis in triple negative breast cancer. Clinical and Experimental Metastasis 37 187–197. (https://doi.org/10.1007/s10585-019-10000-7)
Metcalf S, Petri BJ, Kruer T, Green B, Dougherty S, Wittliff JL, Klinge CM & & Clem BF 2020b Serine synthesis influences tamoxifen response in ER+ human breast carcinoma. Endocrine-Related Cancer 28 27–37. (https://doi.org/10.1530/ERC-19-0510)
Mizuno K, Mataki H, Arai T, Okato A, Kamikawaji K, Kumamoto T, Hiraki T, Hatanaka K, Inoue H & & Seki N 2017 The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. Journal of Human Genetics 62 671–678. (https://doi.org/10.1038/jhg.2017.27)
Moradi F, Mohajerani F & & Sadeghizadeh M 2022 CCAT2 knockdown inhibits cell growth, and migration and promotes apoptosis through regulating the hsa-mir-145-5p/AKT3/mTOR axis in tamoxifen-resistant MCF7 cells. Life Sciences 311 121183. (https://doi.org/10.1016/j.lfs.2022.121183)
Moritz CP 2017 Tubulin or not tubulin: heading toward total protein staining as loading control in Western blots. Proteomics 17 1600189. (https://doi.org/10.1002/pmic.201600189)
Muluhngwi P & & Klinge CM 2015 Roles for miRNAs in endocrine resistance in breast cancer. Endocrine-Related Cancer 22 R279–R300. (https://doi.org/10.1530/ERC-15-0355)
Muluhngwi P, Alizadeh-Rad N, Vittitow SL, Kalbfleisch TS & & Klinge CM 2017 The miR-29 transcriptome in endocrine-sensitive and resistant breast cancer cells. Scientific Reports 7 5205. (https://doi.org/10.1038/s41598-017-05727-w)
Ni Q, Zhang H, Shi X & & Li X 2023 Exosomal lncRNA HCG18 contributes to cholangiocarcinoma growth and metastasis through mediating miR-424-5p/SOX9 axis through PI3K/AKT pathway. Cancer Gene Therapy 30 582–595. (https://doi.org/10.1038/s41417-022-00500-2)
Ortega AD, Sala S, Espinosa E, González-Barón M & & Cuezva JM 2008 HuR and the bioenergetic signature of breast cancer: a low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. Carcinogenesis 29 2053–2061. (https://doi.org/10.1093/carcin/bgn185)
Ou Y, Wang SJ, Jiang L, Zheng B & & Gu W 2015 p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. Journal of Biological Chemistry 290 457–466. (https://doi.org/10.1074/jbc.M114.616359)
Pan C, Li B & & Simon MC 2021 Moonlighting functions of metabolic enzymes and metabolites in cancer. Molecular Cell 81 3760–3774. (https://doi.org/10.1016/j.molcel.2021.08.031)
Pan Y, Huang Q, Peng X, Yu S & & Liu N 2022 Circ_0015756 promotes ovarian cancer progression via the miR-145-5p/PSAT1 axis. Reproductive Biology 22 100702. (https://doi.org/10.1016/j.repbio.2022.100702)
Petri BJ & & Klinge CM 2020 Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metastasis Reviews 39 837–886. (https://doi.org/10.1007/s10555-020-09905-7)
Petri BJ, Piell KM, South Whitt GC, Wilt AE, Poulton CC, Lehman NL, Clem BF, Nystoriak MA, Wysoczynski M & & Klinge CM 2021 HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Letters 518 152–168. (https://doi.org/10.1016/j.canlet.2021.07.015)
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, et al.2011 Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476 346–350. (https://doi.org/10.1038/nature10350)
Qian CS, Li LJ, Huang HW, Yang HF & & Wu DP 2020 MYC-regulated lncRNA NEAT1 promotes B cell proliferation and lymphomagenesis via the miR-34b-5p-GLI1 pathway in diffuse large B-cell lymphoma. Cancer Cell International 20 87. (https://doi.org/10.1186/s12935-020-1158-6)
Qiao Y, Wang B, Yan Y & & Niu L 2022 Long noncoding RNA ST8SIA6-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by targeting miR-145-5p/CDCA3 to inactivate the p53/p21 signaling pathway. Environmental Toxicology 37 2398–2411. (https://doi.org/10.1002/tox.23605)
Qu H, Li X, Chen F, Zhang M, Lu X, Gu Y, Lv M & & Lu C 2023 LncRNA PVT1 influences breast cancer cells glycolysis through sponging miR-145-5p. Genes and Genomics 45 581–592. (https://doi.org/10.1007/s13258-023-01368-8)
Radde BN, Ivanova MM, Mai HX, Alizadeh-Rad N, Piell K, Van Hoose P, Cole MP, Muluhngwi P, Kalbfleisch TS, Rouchka EC, et al.2016 Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells. Experimental Cell Research 347 222–231. (https://doi.org/10.1016/j.yexcr.2016.08.006)
Rani A, Stebbing J, Giamas G & & Murphy J 2019 Endocrine resistance in hormone receptor positive breast cancer-from mechanism to therapy. Frontiers in Endocrinology (Lausanne) 10 245. (https://doi.org/10.3389/fendo.2019.00245)
Ring AE, Smith IE, Ashley S, Fulford LG & & Lakhani SR 2004 Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. British Journal of Cancer 91 2012–2017. (https://doi.org/10.1038/sj.bjc.6602235)
Robertson JFR, Paridaens RJ, Lichfield J, Bradbury I & & Campbell C 2021 Meta-analyses of phase 3 randomised controlled trials of third generation aromatase inhibitors versus tamoxifen as first-line endocrine therapy in postmenopausal women with hormone receptor-positive advanced breast cancer. European Journal of Cancer 145 19–28. (https://doi.org/10.1016/j.ejca.2020.11.038)
Rogucki M, Sidorkiewicz I, Niemira M, Dzięcioł JB, Buczyńska A, Adamska A, Siewko K, Kościuszko M, Maliszewska K, Wójcicka A, et al.2022 Expression profile and diagnostic significance of microRNAs in papillary thyroid cancer. Cancers (Basel) 14. (https://doi.org/10.3390/cancers14112679)
Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A, Martínez-Augustin O & & de Medina FS 2010 Reversible Ponceau staining as a loading control alternative to actin in Western blots. Analytical Biochemistry 401 318–320. (https://doi.org/10.1016/j.ab.2010.02.036)
Samuel Eziokwu A, Varella L, Lynn Kruse M, Jia X, Moore HCF, Thomas Budd G, Abraham J & & Montero AJ 2020 Real-world outcomes of cyclin-dependent kinase inhibitors continued beyond first disease progression in hormone receptor-positive metastatic breast cancer. Clinical Breast Cancer 21 205–209. (https://doi.org/10.1016/j.clbc.2020.09.010)
Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, Liu F, Gu L, Lian Y, Li J, et al.2018 Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Letters 426 37–46. (https://doi.org/10.1016/j.canlet.2018.03.049)
Schmittgen TD & & Livak KJ 2008 Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3 1101–1108. (https://doi.org/10.1038/nprot.2008.73)
Siegel RL, Miller KD, Wagle NS & & Jemal A 2023 Cancer statistics, 2023. CA: A Cancer Journal for Clinicians 73 17–48. (https://doi.org/10.3322/caac.21763)
Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR & & Tamura RE 2018 p53 and metabolism: from mechanism to therapeutics. Oncotarget 9 23780–23823. (https://doi.org/10.18632/oncotarget.25267)
Sullivan MR, Mattaini KR, Dennstedt EA, Nguyen AA, Sivanand S, Reilly MF, Meeth K, Muir A, Darnell AM, Bosenberg MW, et al.2019 Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metabolism 29 1410–1421.e4. (https://doi.org/10.1016/j.cmet.2019.02.015)
Sun J, Zhang Y, Li B, Dong Y, Sun C, Zhang F, Jin L, Chen D & & Wang W 2019 PITPNA-AS1 abrogates the inhibition of miR-876-5p on WNT5A to facilitate hepatocellular carcinoma progression. Cell Death and Disease 10 844. (https://doi.org/10.1038/s41419-019-2067-2)
Tao S, Chen Y, Hu M, Xu L, Fu CB & & Hao XB 2022 LncRNA PVT1 facilitates DLBCL development via miR-34b-5p/Foxp1 pathway. Molecular and Cellular Biochemistry 477 951–963. (https://doi.org/10.1007/s11010-021-04335-7)
Tian J, Cui P, Li Y, Yao X, Wu X, Wang Z & & Li C 2020 LINC02418 promotes colon cancer progression by suppressing apoptosis via interaction with miR-34b-5p/BCL2 axis. Cancer Cell International 20 460. (https://doi.org/10.1186/s12935-020-01530-2)
Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R & & Jurisica I 2018 mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Research 46 D360–D370. (https://doi.org/10.1093/nar/gkx1144)
Visvanathan K, Fabian CJ, Bantug E, Brewster AM, Davidson NE, DeCensi A, Floyd JD, Garber JE, Hofstatter EW, Khan SA, et al.2019 Use of endocrine therapy for breast cancer risk reduction: ASCO clinical practice guideline update. Journal of Clinical Oncology 37 3152–3165. (https://doi.org/10.1200/JCO.19.01472)
Wang S, Xue X, Wang R, Li X, Li Q, Wang Y, Xie P, Kang Y, Meng R & & Feng X 2018 CircZNF609 promotes breast cancer cell growth, migration, and invasion by elevating p70S6K1 via sponging miR-145-5p. Cancer Management and Research 10 3881–3890. (https://doi.org/10.2147/CMAR.S174778)
Wang Y, Lin C & & Liu Y 2022 Molecular mechanism of miR-34b-5p and RNA binding protein HuR binding to lncRNA OIP5-AS1 in colon cancer cells. Cancer Gene Therapy 29 612–624. (https://doi.org/10.1038/s41417-021-00342-4)
Wang H, Fang Q, You S, Wu Y & & Zhang C 2023 miRNA-195-5p/PSAT1 feedback loop in human triple-negative breast cancer cells. Genes and Genomics 45 39–47. (https://doi.org/10.1007/s13258-022-01327-9)
Wu K, Hu G, He X, Zhou P, Li J, He B & & Sun W 2013 MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathology Oncology Research 19 739–748. (https://doi.org/10.1007/s12253-013-9637-x)
Wu M, Huang Y, Chen T, Wang W, Yang S, Ye Z & & Xi X 2019 LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis. Journal of Cellular and Molecular Medicine 23 29–38. (https://doi.org/10.1111/jcmm.13658)
Wu J, Lv Y, Li Y, Jiang Y, Wang L, Zhang X, Sun M, Zou Y, Xu J & & Zhang L 2020 MCM3AP-AS1/miR-876-5p/WNT5A axis regulates the proliferation of prostate cancer cells. Cancer Cell International 20 307. (https://doi.org/10.1186/s12935-020-01365-x)
Xian J, Shang M, Dai Y, Wang Q, Long X, Li J, Cai Y, Xia C & & Peng X 2022 N6-methyladenosine-modified long non-coding RNA AGAP2-AS1 promotes psoriasis pathogenesis via miR-424-5p/AKT3 axis. Journal of Dermatological Science 105 27–36. (https://doi.org/10.1016/j.jdermsci.2021.11.007)
Xiu Y, Cao S, Jiang R & & Zhou Y 2022 lncRNA LINC01315 promotes malignancy of triple-negative breast cancer and predicts poor outcomes by modulating microRNA-876-5p/GRK5. Bioengineered 13 10001–10009. (https://doi.org/10.1080/21655979.2022.2062536)
Xu J, Zheng J, Wang J & & Shao J 2019 miR-876-5p suppresses breast cancer progression through targeting TFAP2A. Experimental and Therapeutic Medicine 18 1458–1464. (https://doi.org/10.3892/etm.2019.7689)
Xu D, Shao F, Bian X, Meng Y, Liang T & & Lu Z 2021 The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metabolism 33 33–50. (https://doi.org/10.1016/j.cmet.2020.12.015)
Yan S, Jiang H, Fang S, Yin F, Wang Z, Jia Y, Sun X, Wu S, Jiang T & & Mao A 2015 MicroRNA-340 inhibits esophageal cancer cell growth and invasion by targeting phosphoserine aminotransferase 1. Cellular Physiology and Biochemistry 37 375–386. (https://doi.org/10.1159/000430361)
Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD & & Thompson CB 2012 Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 109 6904–6909. (https://doi.org/10.1073/pnas.1204176109)
Ye X, Zhu B, Han J, Huang J & & Wu Y 2022 Circ-0036602 acts as a sponge of MiR-34a-5p and MiR-431-5p to promote cervical cancer proliferation and invasion. Journal of Genomics 10 16–25. (https://doi.org/10.7150/jgen.62458)
Yu Y, Gao F, He Q, Li G & & Ding G 2020 lncRNA UCA1 functions as a ceRNA to promote prostate cancer progression via sponging miR143. Molecular Therapy. Nucleic Acids 19 751–758. (https://doi.org/10.1016/j.omtn.2019.11.021)
Yu J, Lou Y, Hou M, Ma X & & Wang L 2022 Circ_0058063 contributes to oral squamous cell carcinoma development by sponging miR-145-5p and upregulating SERPINE1. Journal of Oral Pathology and Medicine 51 630–637. (https://doi.org/10.1111/jop.13331)
Yu W, Ning K, Bai Q & & Xiao J 2023 Circ_0001686 knockdown suppresses tumorigenesis and enhances radiosensitivity in esophagus cancer through regulating miR-876-5p/SPIN1 axis. Pathology, Research and Practice 241 154216. (https://doi.org/10.1016/j.prp.2022.154216)
Yuan Z, Sanders AJ, Ye L, Wang Y & & Jiang WG 2011 Knockdown of human antigen R reduces the growth and invasion of breast cancer cells in vitro and affects expression of cyclin D1 and MMP-9. Oncology Reports 26 237–245. (https://doi.org/10.3892/or.2011.1271)
Zhang G, Yang Y, Hu H, Liu K, Li B, Zhu Y, Wang Z, Wu Q & & Mei Y 2021 Energy stress-induced linc01564 activates the serine synthesis pathway and facilitates hepatocellular carcinogenesis. Oncogene 40 2936–2951. (https://doi.org/10.1038/s41388-021-01749-x)
Zhang C & & Yang T 2023 Long non-coding RNA LINC00473 promotes breast cancer progression via miR-424-5p/CCNE1 pathway. Protein and Peptide Letters 30 72–84. (https://doi.org/10.2174/0929866530666221026164454)
Zhao Y, Dai Q, Fu X, Chen Q, Tang Y, Gao X & & Zhou Q 2021 CircVAPA exerts oncogenic property in non-small cell lung cancer by the miR-876-5p/WNT5A axis. Journal of Gene Medicine 23 e3325. (https://doi.org/10.1002/jgm.3325)
Zhao J, Lin H, Huang K & & Li S 2022 Cancer-associated fibroblasts-derived extracellular vesicles carrying lncRNA SNHG3 facilitate colorectal cancer cell proliferation via the miR-34b-5p/HuR/HOXC6 axis. Cell Death Discovery 8 346. (https://doi.org/10.1038/s41420-022-01116-z)
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al.2016 Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications 7 11215. (https://doi.org/10.1038/ncomms11215)
Zhou K, Song B, Wei M, Fang J & & Xu Y 2020 MiR-145-5p suppresses the proliferation, migration and invasion of gastric cancer epithelial cells via the ANGPT2/NOD_LIKE_RECEPTOR axis. Cancer Cell International 20 416. (https://doi.org/10.1186/s12935-020-01483-6)
Zhu H, Luo H, Zhu X, Hu X, Zheng L & & Zhu X 2017 Pyruvate kinase M2 (PKM2) expression correlates with prognosis in solid cancers: a meta-analysis. Oncotarget 8 1628–1640. (https://doi.org/10.18632/oncotarget.13703)
Online ISSN: 1479-6821
Print ISSN: 1351-0088
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519