Mammary gland development and EDC-driven cancer susceptibility in mesenchymal ERα-knockout mice

in Endocrine-Related Cancer
Authors:
Clarissa Wormsbaecher Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Clarissa Wormsbaecher in
Current site
Google Scholar
PubMed
Close
,
Brittney M Cumbia The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Brittney M Cumbia in
Current site
Google Scholar
PubMed
Close
,
Emma G Amurgis The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Emma G Amurgis in
Current site
Google Scholar
PubMed
Close
,
Jillian M Poska Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Jillian M Poska in
Current site
Google Scholar
PubMed
Close
,
Madeline R Price Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Madeline R Price in
Current site
Google Scholar
PubMed
Close
,
Xiaokui M Mo Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

Search for other papers by Xiaokui M Mo in
Current site
Google Scholar
PubMed
Close
,
Sue E Knoblaugh Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Sue E Knoblaugh in
Current site
Google Scholar
PubMed
Close
,
Takeshi Kurita The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Takeshi Kurita in
Current site
Google Scholar
PubMed
Close
, and
Craig Joseph Burd Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Craig Joseph Burd in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to C J Burd: craig.burd@osumc.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Development of the mammary gland requires both proper hormone signaling and cross talk between the stroma and epithelium. While estrogen receptor (ERα) expression in the epithelium is essential for normal gland development, the role of this receptor in the stroma is less clear. Moreover, several lines of evidence suggest that mouse phenotypes of in utero exposure to endocrine disruption act through mesenchymal ERα in the developing fetus. We utilized a Twist2-cre mouse line to knock out mesenchymal ERα. Herein, we assessed mammary gland development in the context of mesenchymal ERα deletion. We also tested the effect of in utero bisphenol A (BPA) exposure to alter the tumor susceptibility in the mouse mammary tumor virus-neu (MMTV-neu) breast cancer mouse model. Mesenchymal ERα deletion resulted in altered reproductive tract development and atypical cytology associated with estrous cycling. The mammary gland demonstrated mature epithelial extension unlike complete ERα-knockout mice, but ductal extension was delayed and reduced compared to ERα-competent mice. Using the MMTV-Neu cancer susceptibility model, ERα-intact mice exposed to BPA had reduced tumor-free survival and overall survival compared to BPA-exposed mice having mesenchymal ERα deletion. This difference is specific for BPA exposure as vehicle-treated animals had no difference in tumor development between mice expressing and not expressing mesenchymal ERα. These data demonstrate that mesenchymal ERα expression is not required for ductal extension, nor does it influence cancer risk in this mouse model but does influence the cancer incidence associated with in utero BPA exposure.

Supplementary Materials

 

  • Collapse
  • Expand
  • Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, Mcart DG, Dunne PD, Mcquaid S, Gray RT, Murray LJ, Coleman HG, et al.2017 QuPath: open source software for digital pathology image analysis. Scientific Reports 7 16878. (https://doi.org/10.1038/s41598-017-17204-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bocchinfuso WP & & Korach KS 1997 Mammary gland development and tumorigenesis in estrogen receptor knockout mice. Journal of Mammary Gland Biology and Neoplasia 2 323334. (https://doi.org/10.1023/a:1026339111278)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buchanan DL, Kurita T, Taylor JA, Lubahn DB, Cunha GR & & Cooke PS 1998 Role of stromal and epithelial estrogen receptors in vaginal epithelial proliferation, stratification, and cornification. Endocrinology 139 43454352. (https://doi.org/10.1210/endo.139.10.6241)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buchanan DL, Setiawan T, Lubahn DB, Taylor JA, Kurita T, Cunha GR & & Cooke PS 1999 Tissue compartment-specific estrogen receptor-alpha participation in the mouse uterine epithelial secretory response. Endocrinology 140 484491. (https://doi.org/10.1210/endo.140.1.6448)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Byers SL, Wiles MV, Dunn SL & & Taft RA 2012 Mouse estrous cycle identification tool and images. PLoS One 7 e35538. (https://doi.org/10.1371/journal.pone.0035538)

  • Caligioni CS 2009 Assessing reproductive status/stages in mice. Current Protocols in Neuroscience Appendix 4 Appendix 4I. (https://doi.org/10.1002/0471142301.nsa04is48)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooke PS, Buchanan DL, Young P, Setiawan T, Brody J, Korach KS, Taylor J, Lubahn DB & & Cunha GR 1997 Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proceedings of the National Academy of Sciences of the United States of America 94 65356540. (https://doi.org/10.1073/pnas.94.12.6535)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cora MC, Kooistra L & & Travlos G 2015 Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicologic Pathology 43 776793. (https://doi.org/10.1177/0192623315570339)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Couse JF, Curtis SW, Washburn TF, Lindzey J, Golding TS, Lubahn DB, Smithies O & & Korach KS 1995 Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Molecular Endocrinology 9 14411454. (https://doi.org/10.1210/mend.9.11.8584021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cunha GR, Young P, Hom YK, Cooke PS, Taylor JA & & Lubahn DB 1997 Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. Journal of Mammary Gland Biology and Neoplasia 2 393402. (https://doi.org/10.1023/a:1026303630843)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Curtis Hewitt S, Couse JF & & Korach KS 2000 Estrogen receptor transcription and transactivation: estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action. Breast Cancer Research 2 345352. (https://doi.org/10.1186/bcr79)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dart DA, Waxman J, Aboagye EO & & Bevan CL 2013 Visualising androgen receptor activity in male and female mice. PLoS One 8 e71694. (https://doi.org/10.1371/journal.pone.0071694)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feng Y, Manka D, Wagner KU & & Khan SA 2007 Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America 104 1471814723. (https://doi.org/10.1073/pnas.0706933104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fenton SE, Hamm JT, Birnbaum LS & & Youngblood GL 2002 Persistent abnormalities in the rat mammary gland following gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicological Sciences 67 6374. (https://doi.org/10.1093/toxsci/67.1.63)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Friedrichs N, Steiner S, Buettner R & & Knoepfle G 2007 Immunohistochemical expression patterns of AP2alpha and AP2gamma in the developing fetal human breast. Histopathology 51 814823. (https://doi.org/10.1111/j.1365-2559.2007.02887.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD & & Muller WJ 1992 Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proceedings of the National Academy of Sciences of the United States of America 89 1057810582. (https://doi.org/10.1073/pnas.89.22.10578)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haslam SZ & & Nummy KA 1992 The ontogeny and cellular distribution of estrogen receptors in normal mouse mammary gland. Journal of Steroid Biochemistry and Molecular Biology 42 589595. (https://doi.org/10.1016/0960-0760(9290449-s)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatch EE, Palmer JR, Titus-Ernstoff L, Noller KL, Kaufman RH, Mittendorf R, Robboy SJ, Hyer M, Cowan CM, Adam E, et al.1998 Cancer risk in women exposed to diethylstilbestrol in utero. JAMA 280 630634. (https://doi.org/10.1001/jama.280.7.630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hewitt SC & & Korach KS 2003 Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues. Reproduction 125 143149. (https://doi.org/10.1530/rep.0.1250143)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hewitt SC, Winuthayanon W & & Korach KS 2016 What's new in estrogen receptor action in the female reproductive tract. Journal of Molecular Endocrinology 56 R55R71. (https://doi.org/10.1530/JME-15-0254)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hindman AR, Mo XM, Helber HL, Kovalchin CE, Ravichandran N, Murphy AR, Fagan AM, St John PM & & Burd CJ 2017 Varying susceptibility of the female mammary gland to in utero windows of BPA exposure. Endocrinology 158 34353447. (https://doi.org/10.1210/en.2017-00116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hiremath M, Dann P, Fischer J, Butterworth D, Boras-Granic K, Hens J, Van Houten J, Shi W & & Wysolmerski J 2012 Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development 139 42394249. (https://doi.org/10.1242/dev.080671)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoover RN, Hyer M, Pfeiffer RM, Adam E, Bond B, Cheville AL, Colton T, Hartge P, Hatch EE, Herbst AL, et al.2011 Adverse health outcomes in women exposed in utero to diethylstilbestrol. New England Journal of Medicine 365 13041314. (https://doi.org/10.1056/NEJMoa1013961)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keeling JW, Ozer E, King G & & Walker F 2000 Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. Journal of Pathology 191 449451. (https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH661>3.0.CO;2-#)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Korach KS, Couse JF, Curtis SW, Washburn TF, Lindzey J, Kimbro KS, Eddy EM, Migliaccio S, Snedeker SM, Lubahn DB, et al.1996 Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Progress in Hormone Research 51 15918 8.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kos M, Denger S, Reid G, Korach KS & & Gannon F 2002 Down but not out? A novel protein isoform of the estrogen receptor alpha is expressed in the estrogen receptor alpha knockout mouse. Journal of Molecular Endocrinology 29 281286. (https://doi.org/10.1677/jme.0.0290281)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurita T, Lee KJ, Cooke PS, Taylor JA, Lubahn DB & & Cunha GR 2000 Paracrine regulation of epithelial progesterone receptor by estradiol in the mouse female reproductive tract. Biology of Reproduction 62 821830. (https://doi.org/10.1093/biolreprod/62.4.821)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kurita T, Cooke PS & & Cunha GR 2001 Epithelial-stromal tissue interaction in paramesonephric (Mullerian) epithelial differentiation. Developmental Biology 240 194211. (https://doi.org/10.1006/dbio.2001.0458)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laronda MM, Unno K, Butler LM & & Kurita T 2012 The development of cervical and vaginal adenosis as a result of diethylstilbestrol exposure in utero. Differentiation 84 252260. (https://doi.org/10.1016/j.diff.2012.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma Z, Parris AB, Howard EW, Davis M, Cao X, Woods C & & Yang X 2020 In utero exposure to bisphenol A promotes mammary tumor risk in MMTV-Erbb2 transgenic mice through the induction of ER-erbB2 crosstalk. International Journal of Molecular Sciences 21. (https://doi.org/10.3390/ijms21093095)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mallepell S, Krust A, Chambon P & & Brisken C 2006 Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America 103 21962201. (https://doi.org/10.1073/pnas.0510974103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matouskova K, Szabo GK, Daum J, Fenton SE, Christiansen S, Soto AM, Kay JE, Cardona B & & Vandenberg LN 2022 Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reproductive Toxicology 112 5167. (https://doi.org/10.1016/j.reprotox.2022.06.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mueller SO, Clark JA, Myers PH & & Korach KS 2002 Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology 143 23572365. (https://doi.org/10.1210/endo.143.6.8836)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muller WJ, Arteaga CL, Muthuswamy SK, Siegel PM, Webster MA, Cardiff RD, Meise KS, Li F, Halter SA & & Coffey RJ 1996 Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Molecular and Cellular Biology 16 57265736. (https://doi.org/10.1128/MCB.16.10.5726)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naccarato AG, Viacava P, Vignati S, Fanelli G, Bonadio AG, Montruccoli G & & Bevilacqua G 2000 Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Archiv 436 431438. (https://doi.org/10.1007/s004280050470)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Palmer JR, Wise LA, Hatch EE, Troisi R, Titus-Ernstoff L, Strohsnitter W, Kaufman R, Herbst AL, Noller KL, Hyer M, et al.2006 Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiology, Biomarkers and Prevention 15 15091514. (https://doi.org/10.1158/1055-9965.EPI-06-0109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parmar H & & Cunha GR 2004 Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocrine-Related Cancer 11 437458. (https://doi.org/10.1677/erc.1.00659)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinson GW 2007 Cooperation of signalling pathways in embryonic mammary gland development. Nature Reviews. Genetics 8 963972. (https://doi.org/10.1038/nrg2227)

  • Smalley MJ 2010 Isolation, culture and analysis of mouse mammary epithelial cells. Methods in Molecular Biology 633 139170. (https://doi.org/10.1007/978-1-59745-019-5_11)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Šošić D, Richardson JA, Yu K, Ornitz DM & & Olson EN 2003 Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 112 169180. (https://doi.org/10.1016/s0092-8674(0300002-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soto AM, Brisken C, Schaeberle C & & Sonnenschein C 2013 Does cancer start in the womb? altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. Journal of Mammary Gland Biology and Neoplasia 18 199208. (https://doi.org/10.1007/s10911-013-9293-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Speroni L, Voutilainen M, Mikkola ML, Klager SA, Schaeberle CM, Sonnenschein C & & Soto AM 2017 New insights into fetal mammary gland morphogenesis: differential effects of natural and environmental estrogens. Scientific Reports 7 40806. (https://doi.org/10.1038/srep40806)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stanko JP, Easterling MR & & Fenton SE 2015 Application of Sholl analysis to quantify changes in growth and development in rat mammary gland whole mounts. Reproductive Toxicology 54 129135. (https://doi.org/10.1016/j.reprotox.2014.11.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stanko JP & & Fenton SE 2017 Quantifying branching density in rat mammary gland whole-mounts using the Sholl analysis method. Journal of Visualized Experiments 125 e55689. (https://doi.org/10.3791/55789)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sternlicht MD 2006 Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Research 8 201. (https://doi.org/10.1186/bcr1368)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wadia PR, Cabaton NJ, Borrero MD, Rubin BS, Sonnenschein C, Shioda T & & Soto AM 2013 Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland. PLoS One 8 e63902. (https://doi.org/10.1371/journal.pone.0063902)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weber Lozada K & & Keri RA 2011 Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biology of Reproduction 85 490497. (https://doi.org/10.1095/biolreprod.110.090431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westwood FR 2008 The female rat reproductive cycle: a practical histological guide to staging. Toxicologic Pathology 36 375384. (https://doi.org/10.1177/0192623308315665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wetendorf M, Wu SP, Wang X, Creighton CJ, Wang T, Lanz RB, Blok L, Tsai SY, Tsai MJ, Lydon JP, et al.2017 Decreased epithelial progesterone receptor A at the window of receptivity is required for preparation of the endometrium for embryo attachment. Biology of Reproduction 96 313326. (https://doi.org/10.1095/biolreprod.116.144410)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wormsbaecher C, Hindman AR, Avendano A, Cortes-Medina M, Jones CE, Bushman A, Onua L, Kovalchin CE, Murphy AR, Helber HL, et al.2020 In utero estrogenic endocrine disruption alters the stroma to increase extracellular matrix density and mammary gland stiffness. Breast Cancer Research 22 41. (https://doi.org/10.1186/s13058-020-01275-w)

    • PubMed
    • Search Google Scholar
    • Export Citation