Chromosomal alterations in sporadic medullary thyroid carcinoma and correlation with outcome

in Endocrine-Related Cancer
Authors:
Teresa Ramone Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Teresa Ramone in
Current site
Google Scholar
PubMed
Close
,
Cristina Romei Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Cristina Romei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5957-8902
,
Raffaele Ciampi Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Raffaele Ciampi in
Current site
Google Scholar
PubMed
Close
,
Roberta Casalini Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Roberta Casalini in
Current site
Google Scholar
PubMed
Close
,
Angelo Valetto Department of Laboratory Medicine, Section of Cytogenetics, University Hospital of Pisa, Pisa, Italy

Search for other papers by Angelo Valetto in
Current site
Google Scholar
PubMed
Close
,
Veronica Bertini Department of Laboratory Medicine, Section of Cytogenetics, University Hospital of Pisa, Pisa, Italy

Search for other papers by Veronica Bertini in
Current site
Google Scholar
PubMed
Close
,
Francesco Raimondi Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy

Search for other papers by Francesco Raimondi in
Current site
Google Scholar
PubMed
Close
,
Anthony Onoja Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy

Search for other papers by Anthony Onoja in
Current site
Google Scholar
PubMed
Close
,
Alessandro Prete Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Alessandro Prete in
Current site
Google Scholar
PubMed
Close
,
Antonio Matrone Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Antonio Matrone in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4263-4717
,
Carla Gambale Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Carla Gambale in
Current site
Google Scholar
PubMed
Close
,
Paolo Piaggi Department of Information Engineering, University of Pisa, Pisa, Italy

Search for other papers by Paolo Piaggi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2774-9161
,
Liborio Torregrossa Department of Surgical, Medical, Molecular Pathology and Critical Area, Unit of Pathology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Liborio Torregrossa in
Current site
Google Scholar
PubMed
Close
,
Clara Ugolini Department of Surgical, Medical, Molecular Pathology and Critical Area, Unit of Pathology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Clara Ugolini in
Current site
Google Scholar
PubMed
Close
, and
Rossella Elisei Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy

Search for other papers by Rossella Elisei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5333-9257

Correspondence should be addressed to R Elisei: rossella.elisei@med.unipi.it

*(T Ramone and C Romei contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Somatic copy number alterations (SCNA) involving either a whole chromosome or just one of the arms, or even smaller parts, have been described in about 88% of human tumors. This study investigated the SCNA profile in 40 well-characterized sporadic medullary thyroid carcinomas by comparative genomic hybridization array. We found that 26/40 (65%) cases had at least one SCNA. The prevalence of SCNA, and in particular of chromosome 3 and 10, was significantly higher in cases with a RET somatic mutation. Similarly, SCNA of chromosomes 3, 9, 10 and 16 were more frequent in cases with a worse outcome and an advanced disease. By the pathway enrichment analysis, we found a mutually exclusive distribution of biological pathways in metastatic, biochemically persistent and cured patients. In particular, we found gain of regions involved in the intracellular signaling and loss of regions involved in DNA repair and TP53 pathways in the group of metastatic patients. Gain of regions involved in the cell cycle and senescence were observed in patients with biochemical disease. Finally, gain of regions associated with the immune system and loss of regions involved in the apoptosis pathway were observed in cured patients suggesting a role of specific SCNA and corresponding altered pathways in the outcome of sporadic MTC.

 

  • Collapse
  • Expand
  • Ach T, Zeitler K, Schwarz-Furlan S, Baader K, Agaimy A, Rohrmeier C, Zenk J, Gosau M, Reichert TE, Brockhoff G, et al.2013 Aberrations of MET are associated with copy number gain of EGFR and loss of PTEN and predict poor outcome in patients with salivary gland cancer. Virchows Archiv 462 6572. (https://doi.org/10.1007/s00428-012-1358-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Angeloni D 2007 Molecular analysis of deletions in human chromosome 3p21 and the role of resident cancer genes in disease. Briefings in Functional Genomics and Proteomics 6 1939. (https://doi.org/10.1093/bfgp/elm007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, et al.2010 The landscape of somatic copy-number alteration across human cancers. Nature 463 899905. (https://doi.org/10.1038/nature08822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bloomfield M & & Duesberg P 2016 Inherent variability of cancer-specific aneuploidy generates metastases. Molecular Cytogenetics 9 90. (https://doi.org/10.1186/s13039-016-0297-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bramhecha YM, Guérard KP, Rouzbeh S, Scarlata E, Brimo F, Chevalier S, Hamel L, Dragomir A, Aprikian AG & & Lapointe J 2018 Genomic gain of 16p13.3 in prostate cancer predicts poor clinical outcome after surgical intervention. Molecular Cancer Research 16 115123. (https://doi.org/10.1158/1541-7786.MCR-17-0270)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cancer Genome Atlas Research Network, Akbani R, , Aksoy BA, , Ally A, , Arachchi H, , Asa SL, , Auman JT, , Balasundaram M, , Balu S, & Baylin SB2014 Integrated genomic characterization of papillary thyroid carcinoma. Cell 159 676690. (https://doi.org/10.1016/j.cell.2014.09.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ciampi R, Romei C, Cosci B, Vivaldi A, Bottici V, Renzini G, Ugolini C, Tacito A, Basolo F, Pinchera A, et al.2012 Chromosome 10 and RET gene copy number alterations in hereditary and sporadic Medullary thyroid Carcinoma. Molecular and Cellular Endocrinology 348 176182. (https://doi.org/10.1016/j.mce.2011.08.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ciampi R, Romei C, Ramone T, Prete A, Tacito A, Cappagli V, Bottici V, Viola D, Torregrossa L, Ugolini C, et al.2019 Genetic landscape of somatic mutations in a large cohort of sporadic medullary thyroid carcinomas studied by next-generation targeted sequencing. iScience 20 324336. (https://doi.org/10.1016/j.isci.2019.09.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Nunno V, Mollica V, Brunelli M, Gatto L, Schiavina R, Fiorentino M, Santoni M, Montironi R, Caliò A, Eccher A, et al.2019 A meta-analysis evaluating clinical outcomes of patients with renal cell carcinoma harboring chromosome 9p loss. Molecular Diagnosis and Therapy 23 569577. (https://doi.org/10.1007/s40291-019-00414-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duijf PHG, Schultz N & & Benezra R 2013 Cancer cells preferentially lose small chromosomes. International Journal of Cancer 132 23162326. (https://doi.org/10.1002/ijc.27924)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fallenius AG, Franzén SA & & Auer GU 1988 Predictive value of nuclear DNA content in breast cancer in relation to clinical and morphologic factors. A retrospective study of 227 consecutive cases. Cancer 62 521530. (https://doi.org/10.1002/1097-0142(19880801)62:3<521::aid-cncr2820620314>3.0.co;2-f)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flicker K, Ulz P, Höger H, Zeitlhofer P, Haas OA, Behmel A, Buchinger W, Scheuba C, Niederle B, Pfragner R, et al.2012 High-resolution analysis of alterations in medullary thyroid carcinoma genomes. International Journal of Cancer 131 E66E73. (https://doi.org/10.1002/ijc.26494)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frisk T, Zedenius J, Lundberg J, Wallin G, Kytölä S & & Larsson C 2001 CGH alterations in medullary thyroid carcinomas in relation to the RET M918T mutation and clinical outcome. International Journal of Oncology 18 12191225. (https://doi.org/10.3892/ijo.18.6.1219)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gagliardi PA, Puliafito A & & Primo L 2018 PDK1: at the crossroad of cancer signaling pathways. Seminars in Cancer Biology 48 2735. (https://doi.org/10.1016/j.semcancer.2017.04.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao B & & Baudis M 2021 Signatures of discriminative copy number aberrations in 31 cancer subtypes. Frontiers in Genetics 12 654887. (https://doi.org/10.3389/fgene.2021.654887)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garraway LA & & Lander ES 2013 Lessons from the cancer genome. Cell 153 1737. (https://doi.org/10.1016/j.cell.2013.03.002)

  • Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, Griss J, Sevilla C, Matthews L, Gong C, et al.2022 The reactome pathway KnowledgeBase 2022. Nucleic Acids Research 50 D687D692. (https://doi.org/10.1093/nar/gkab1028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • González-Yebra B, Peralta R, González AL, Ayala-Garcia MA, de Zarate MEMO & & Salcedo M 2012 Genetic alterations in a primary medullary thyroid carcinoma and its lymph node metastasis in a patient with 15 years follow-up. Diagnostic Pathology 7 63. (https://doi.org/10.1186/1746-1596-7-63)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu Z, Eils R & & Schlesner M 2016 Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics (Oxford, England) 32 28472849. (https://doi.org/10.1093/bioinformatics/btw313)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han G, Yang G, Hao D, Lu Y, Thein K, Simpson BS, Chen J, Sun R, Alhalabi O, Wang R, et al.2021 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nature Communications 12 5606. (https://doi.org/10.1038/s41467-021-25894-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harbers L, Agostini F, Nicos M, Poddighe D, Bienko M & & Crosetto N 2021 Somatic copy number alterations in human cancers: an analysis of publicly available data from the cancer genome atlas. Frontiers in Oncology 11 700568. (https://doi.org/10.3389/fonc.2021.700568)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hegde A, Andreev-Drakhlin AY, Roszik J, Huang L, Liu S, Hess K, Cabanillas M, Hu MI, Busaidy NL, Sherman SI, et al.2020 Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies. ESMO Open 5 e000799. (https://doi.org/10.1136/esmoopen-2020-000799)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hemmer J, Thein T & & Van Heerden WF 1997 The value of DNA flow cytometry in predicting the development of lymph node metastasis and survival in patients with locally recurrent oral squamous cell carcinoma. Cancer 79 23092313. (https://doi.org/10.1002/(sici)1097-0142(19970615)79:12<2309::aid-cncr3>3.0.co;2-g)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hemmer S, Wasenius VM, Knuutila S, Franssila K & & Joensuu H 1999 DNA copy number changes in thyroid carcinoma. American Journal of Pathology 154 15391547. (https://doi.org/10.1016/S0002-9440(1065407-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herrmann M 2003 Standard and molecular cytogenetics of endocrine tumors. American Journal of Clinical Pathology 119(Supplement) S17S38. (https://doi.org/10.1309/C97C-7EY0-0KRQ-WYVT)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hesson LB, Cooper WN & & Latif F 2007 Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene 26 72837301. (https://doi.org/10.1038/sj.onc.1210547)

  • Hieronymus H, Murali R, Tin A, Yadav K, Abida W, Moller H, Berney D, Scher H, Carver B, Scardino P, et al.2018 Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. eLife 7 e37294. (https://doi.org/10.7554/eLife.37294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ingvarsson S 2005 Tumor suppressor genes on human Chromosome 3 and cancer pathogenesis. Cancer Genomics and Proteomics 2 247253.

  • Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS, et al.2018 Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Reports 23 239254.e6. (https://doi.org/10.1016/j.celrep.2018.03.076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koçak A, Heselmeyer-Haddad K, Lischka A, Hirsch D, Fiedler D, Hu Y, Doberstein N, Torres I, Chen WD, Gertz EM, et al.2020 High levels of chromosomal copy number alterations and TP53 mutations correlate with poor outcome in younger breast cancer patients. American Journal of Pathology 190 16431656. (https://doi.org/10.1016/j.ajpath.2020.04.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kou F, Wu L, Guo Y, Zhang B, Li B, Huang Z, Ren X & & Yang L 2021 Somatic copy number alterations are predictive of progression-free survival in patients with lung adenocarcinoma undergoing radiotherapy. Cancer Biology and Medicine 19 685695. (https://doi.org/10.20892/j.issn.2095-3941.2020.0728)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, Cope L, Sun W, Wang Y, Prasad N, Sangenario L, Talbot K, Somervell H, Westra W, Bishop J, et al.2013 DNA copy number variations characterize benign and malignant thyroid tumors. Journal of Clinical Endocrinology and Metabolism 98 E558E566. (https://doi.org/10.1210/jc.2012-3113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mampaey E, Fieuw A, Van Laethem T, Ferdinande L, Claes K, Ceelen W, Van Nieuwenhove Y, Pattyn P, De Man M, De Ruyck K, et al.2015 Focus on 16p13.3 locus in colon cancer. PLOS ONE 10 e0131421. (https://doi.org/10.1371/journal.pone.0131421)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marsh DJ, Theodosopoulos G, Martin-Schulte K, Richardson AL, Philips J, Röher HD, Delbridge L & & Robinson BG 2003 Genome-wide copy number imbalances identified in familial and sporadic medullary thyroid carcinoma. Journal of Clinical Endocrinology and Metabolism 88 18661872. (https://doi.org/10.1210/jc.2002-021155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olave MC & & Graham RP 2022 Mismatch repair deficiency: the what, how and why it is important. Genes, Chromosomes and Cancer 61 314321. (https://doi.org/10.1002/gcc.23015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park HS, Jang MH, Kim EJ, Kim HJ, Lee HJ, Kim YJ, Kim JH, Kang E, Kim SW, Kim IA, et al.2014 High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Modern Pathology 27 12121222. (https://doi.org/10.1038/modpathol.2013.251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poku VO & & Iram SH 2022 A critical review on modulators of multidrug resistance Protein 1 in cancer cells. PeerJ 10 e12594. (https://doi.org/10.7717/peerj.12594)

  • Qu N, Shi X, Zhao JJ, Guan H, Zhang TT, Wen SS, Liao T, Hu JQ, Liu WY, Wang YL, et al.2020 Genomic and transcriptomic characterization of sporadic medullary thyroid carcinoma. Thyroid 30 10251036. (https://doi.org/10.1089/thy.2019.0531)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramone T, Mulè C, Ciampi R, Bottici V, Cappagli V, Prete A, Matrone A, Piaggi P, Torregrossa L, Basolo F, et al.2020 RET copy number alteration in medullary thyroid cancer is a rare event correlated with RET somatic mutations and high allelic frequency. Genes 12 35. (https://doi.org/10.3390/genes12010035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Romei C, Ramone T, Mulè C, Prete A, Cappagli V, Lorusso L, Torregrossa L, Basolo F, Ciampi R & & Elisei R 2021 RET mutated C-cells proliferate more rapidly than non-mutated neoplastic cells. Endocrine Connections 10 124130. (https://doi.org/10.1530/EC-20-0589)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santaguida S & & Amon A 2015 Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nature Reviews. Molecular Cell Biology 16 473485. (https://doi.org/10.1038/nrm4025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shao X, Lv N, Liao J, Long J, Xue R, Ai N, Xu D & & Fan X 2019 Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Medical Genetics 20 175. (https://doi.org/10.1186/s12881-019-0909-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I & & Forbes SA 2018 The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nature Reviews. Cancer 18 696705. (https://doi.org/10.1038/s41568-018-0060-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, et al.2011 Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144 2740. (https://doi.org/10.1016/j.cell.2010.11.055)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stopsack KH, Whittaker CA, Gerke TA, Loda M, Kantoff PW, Mucci LA & & Amon A 2019 Aneuploidy drives lethal progression in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 116 1139011395. (https://doi.org/10.1073/pnas.1902645116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, Schumacher SE, Wang C, Hu H, Liu J, et al.2018 Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33 676689.e3. (https://doi.org/10.1016/j.ccell.2018.03.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Torres L, Ribeiro FR, Pandis N, Andersen JA, Heim S & & Teixeira MR 2007 Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Research and Treatment 102 143155. (https://doi.org/10.1007/s10549-006-9317-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA & & Kinzler KW 2013 Cancer genome landscapes. Science (New York, NY) 339 15461558. (https://doi.org/10.1126/science.1235122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Voutsadakis IA 2021 The landscape of chromosome instability in breast cancers and associations with the tumor mutation burden: an analysis of data from TCGA. Cancer Investigation 39 2538. (https://doi.org/10.1080/07357907.2020.1863418)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wen X, Cimera R, Aryeequaye R, Abhinta M, Athanasian E, Healey J, Fabbri N, Boland P, Zhang Y & & Hameed M 2021 Recurrent loss of chromosome 22 and SMARCB1 deletion in extra-axial chordoma: A clinicopathological and molecular analysis. Genes, Chromosomes and Cancer 60 796807. (https://doi.org/10.1002/gcc.22992)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williams MD, Ma J, Grubbs EG, Gagel RF & & Bagheri-Yarmand R 2021 ATF4 loss of heterozygosity is associated with poor overall survival in medullary thyroid carcinoma. American Journal of Cancer Research 11 32273239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yagyu T, Ohira T, Shimizu R, Morimoto M, Murakami Y, Hanaki T, Kihara K, Matsunaga T, Yamamoto M, Tokuyasu N, et al.2021 Human chromosome 3p21.3 carries tert transcriptional regulators in pancreatic cancer. Scientific Reports 11 15355. (https://doi.org/10.1038/s41598-021-94711-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ye L, Santarpia L, Cote GJ, El-Naggar AK & & Gagel RF 2008 High resolution array-comparative genomic hybridization profiling reveals deoxyribonucleic acid copy number alterations associated with medullary thyroid carcinoma. Journal of Clinical Endocrinology and Metabolism 93 43674372. (https://doi.org/10.1210/jc.2008-0912)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zabarovsky ER, Lerman MI & & Minna JD 2002 Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21 69156935. (https://doi.org/10.1038/sj.onc.1205835)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel CH, et al.2013 Pan-cancer patterns of somatic copy number alteration. Nature Genetics 45 11341140. (https://doi.org/10.1038/ng.2760)

    • PubMed
    • Search Google Scholar
    • Export Citation