Promoter mutation-independent TERT expression is related to the immune-enriched milieu in papillary thyroid cancer

in Endocrine-Related Cancer
Authors:
Dong Hyun Seo Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea

Search for other papers by Dong Hyun Seo in
Current site
Google Scholar
PubMed
Close
,
Seul Gi Lee Yonsei University Graduate School of Medical Science, Seoul, South Korea

Search for other papers by Seul Gi Lee in
Current site
Google Scholar
PubMed
Close
,
Soon Min Choi Department of Surgery, Hallym Hospital, Incheon, South Korea

Search for other papers by Soon Min Choi in
Current site
Google Scholar
PubMed
Close
,
Ha Yan Kim Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea

Search for other papers by Ha Yan Kim in
Current site
Google Scholar
PubMed
Close
,
Sunmi Park Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea

Search for other papers by Sunmi Park in
Current site
Google Scholar
PubMed
Close
,
Sang Geun Jung Department of Gynecological Oncology, Bundang CHA Medical Center, CHA University Gyeonggi-do, South Korea

Search for other papers by Sang Geun Jung in
Current site
Google Scholar
PubMed
Close
,
Young Suk Jo Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea

Search for other papers by Young Suk Jo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9926-8389
, and
Jandee Lee Department of Surgery, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, South Korea

Search for other papers by Jandee Lee in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to YS Jo or J Lee: joys@yuhs.ac or jandee@yuhs.ac

*(D H Seo, S G Lee and S M Choi contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Telomerase reverse transcriptase promoter mutation (pTERT MT) promotes human carcinogenesis via aberrant expression of telomerase reverse transcriptase (TERT). However, the tumorigenic impact of TERT expression independent of pTERT MT remains unclear despite numerous mechanisms of TERT being suggested. To tackle this issue, we employed comprehensive bioinformatics to assess biological variations noticed among different TERT expression mechanisms. Papillary thyroid cancer (PTC) with pTERT MT (pTERT MT PTC) presented aggressive clinical behavior and exhibited biological profiles associated with cellular immortality and genomic instability. PTC with TERT expression but without pTERT MT (TERT (+) PTC), also exhibited poor clinicopathological characteristics and was enriched with immune responses. In accordance, c-MYC/E2F and nuclear factor kappa B (NFκB) were dominant transcription factors in pTERT MT PTC and TERT (+) PTC, respectively. Notably, we revealed TERT hypermethylated oncological region (THOR) as a potential TERT expressing mechanism in TERT (+) PTC patients. Furthermore, three unique subtypes of papillary thyroid cancer were deciphered using a combination of machine learning-based scoring systems. Our proposed scoring system was clinically significant, especially in microcarcinoma, predicting survival outcomes and inferring therapeutic responses to radioactive iodine therapy. Finally, our analysis was expanded to endocrine-related cancers, unveiling various regulatory mechanisms of TERT with poor clinical outcomes and biological behaviors.

 

  • Collapse
  • Expand
  • Ahn HS, Kim HJ & & Welch HG 2014 Korea’s thyroid-cancer “epidemic” — screening and overdiagnosis. New England Journal of Medicine 371 17651767. (https://doi.org/10.1056/NEJMp1409841)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bell RJA, Rube HT, Kreig A, Mancini A, Fouse SD, Nagarajan RP, Choi S, Hong C, He D, Pekmezci M, et al.2015 The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348 10361039. (https://doi.org/10.1126/science.aab0015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bolger AM, Lohse M & & Usadel B 2014 Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30 21142120. (https://doi.org/10.1093/bioinformatics/btu170)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buffet C, Wassermann J, Hecht F, Leenhardt L, Dupuy C, Groussin L & & Lussey-Lepoutre C 2020 Redifferentiation of radioiodine-refractory thyroid cancers. Endocrine-Related Cancer 27 R113R132. (https://doi.org/10.1530/ERC-19-0491)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cho U, Oh WJ, Bae JS, Lee S, Lee YS, Park GS, Lee YS & & Jung CK 2014 Clinicopathological features of rare BRAF mutations in Korean thyroid cancer patients. Journal of Korean Medical Science 29 10541060. (https://doi.org/10.3346/jkms.2014.29.8.1054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi JB, Lee WK, Lee SG, Ryu H, Lee CR, Kang SW, Jeong JJ, Nam KH, Lee EJ, Chung WY, et al.2018 Long-term oncologic outcomes of papillary thyroid microcarcinoma according to the presence of clinically apparent lymph node metastasis: a large retrospective analysis of 5,348 patients. Cancer Management and Research 10 28832891. (https://doi.org/10.2147/CMAR.S173853)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davies L & & Welch HG 2006 Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295 21642167. (https://doi.org/10.1001/jama.295.18.2164)

  • Davies L & & Welch HG 2014 Current thyroid cancer trends in the United States. JAMA Otolaryngology– Head and Neck Surgery 140 317322. (https://doi.org/10.1001/jamaoto.2014.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Biase D, Gandolfi G, Ragazzi M, Eszlinger M, Sancisi V, Gugnoni M, Visani M, Pession A, Casadei G, Durante C, et al.2015 TERT promoter mutations in papillary thyroid microcarcinomas. Thyroid 25 10131019. (https://doi.org/10.1089/thy.2015.0101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dogan F & & Forsyth NR 2021 Telomerase regulation: a role for epigenetics. Cancers 13 1213. (https://doi.org/10.3390/cancers13061213)

  • Doolittle WKL, Park S, Lee SG, Jeong S, Lee G, Ryu D, Schoonjans K, Auwerx J, Lee J & & Jo YS 2022 Non-genomic activation of the AKT-mTOR pathway by the mitochondrial stress response in thyroid cancer. Oncogene 41 48934904. (https://doi.org/10.1038/s41388-022-02484-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dratwa M, Wysoczańska B, Łacina P, Kubik T & & Bogunia-Kubik K 2020 TERT—regulation and roles in cancer formation. Frontiers in Immunology 11 589929. (https://doi.org/10.3389/fimmu.2020.589929)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, Caillou B, Ricard M, Lumbroso JD, De Vathaire F, et al.2006 Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. Journal of Clinical Endocrinology and Metabolism 91 28922899. (https://doi.org/10.1210/jc.2005-2838)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ebina A, Togashi Y, Baba S, Sato Y, Sakata S, Ishikawa M, Mitani H, Takeuchi K & & Sugitani I 2020 TERT promoter mutation and extent of thyroidectomy in patients with 1–4 cm intrathyroidal papillary carcinoma. Cancers 12 2115. (https://doi.org/10.3390/cancers12082115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hellgren LS, Olsson A, Kaufeldt A, Paulsson JO, Hysek M, Stenman A, Zedenius J, Larsson C, Höög A & & Juhlin CC 2021 Nuclear-specific accumulation of telomerase reverse transcriptase (TERT) mRNA in TERT promoter mutated follicular thyroid tumours visualised by in situ hybridisation: a possible clinical screening tool? Journal of Clinical Pathology 75 658662. (https://doi.org/10.1136/jclinpath-2021-207631)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L & & Garraway LA 2013 Highly recurrent TERT promoter mutations in human melanoma. Science 339 957959. (https://doi.org/10.1126/science.1229259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ito Y, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, Yokozawa T, Matsuzuka F, Kuma S, Kuma K, et al.2003 An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid 13 381387. (https://doi.org/10.1089/105072503321669875)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim D, Langmead B & & Salzberg SL 2015 HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12 357360. (https://doi.org/10.1038/nmeth.3317)

  • Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, et al.2016 Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation 126 10521066. (https://doi.org/10.1172/JCI85271)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee SE, Hwang TS, Choi Y-L, Han HS, Kim WS, Jang MH, Kim SK & & Yang JH 2016 Prognostic significance of TERT promoter mutations in papillary thyroid carcinomas in a BRAFV600E mutation–prevalent population. Thyroid 26 901910. (https://doi.org/10.1089/thy.2015.0488)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee DD, Leão R, Komosa M, Gallo M, Zhang CH, Lipman T, Remke M, Heidari A, Nunes NM, Apolonio JD, et al.2019 DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. Journal of Clinical Investigation 129 223229. (https://doi.org/10.1172/JCI121303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee DD, Komosa M, Nunes NM & & Tabori U 2020 DNA methylation of the TERT promoter and its impact on human cancer. Current Opinion in Genetics and Development 60 1724. (https://doi.org/10.1016/j.gde.2020.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee DD, Komosa M, Sudhaman S, Leão R, Zhang CH, Apolonio JD, Hermanns T, Wild PJ, Klocker H, Nassiri F, et al.2021 Dual role of allele-specific DNA hypermethylation within the TERT promoter in cancer. Journal of Clinical Investigation 131 e146915. (https://doi.org/10.1172/JCI146915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R & 1000 Genome Project Data Processing Subgroup 2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 20782079. (https://doi.org/10.1093/bioinformatics/btp352)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu X 2012 Classification accuracy and cut point selection. Statistics in Medicine 31 26762686. (https://doi.org/10.1002/sim.4509)

  • Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, Sun H, El-Naggar AK & & Xing M 2013 Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocrine-Related Cancer 20 603610. (https://doi.org/10.1530/ERC-13-0210)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G, Murugan AK, Guan H, Yu H, Wang Y, et al.2014 TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. Journal of Clinical Endocrinology and Metabolism 99 E1130E1136. (https://doi.org/10.1210/jc.2013-4048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW & & Xing M 2017 Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncology 3 202208. (https://doi.org/10.1001/jamaoncol.2016.3288)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lorbeer FK & & Hockemeyer D 2020 TERT promoter mutations and telomeres during tumorigenesis. Current Opinion in Genetics and Development 60 5662. (https://doi.org/10.1016/j.gde.2020.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques IJ, Moura MM, Cabrera R, Pinto AE, Simões-Pereira J, Santos C, Menezes FD, Montezuma D, Henrique R, Rodrigues Teixeira M, et al.2017 Identification of somatic TERT promoter mutations in familial nonmedullary thyroid carcinomas. Clinical Endocrinology 87 394399. (https://doi.org/10.1111/cen.13375)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsuse M, Yabuta T, Saenko V, Hirokawa M, Nishihara E, Suzuki K, Yamashita S, Miyauchi A & & Mitsutake N 2017 TERT promoter mutations and Ki-67 labeling index as a prognostic marker of papillary thyroid carcinomas: combination of two independent factors. Scientific Reports 7 41752. (https://doi.org/10.1038/srep41752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MGF, Griffith M, Heravi Moussavi A, Senz J, Melnyk N, et al.2011 deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Computational Biology 7 e1001138. (https://doi.org/10.1371/journal.pcbi.1001138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S & & Dal Maso L 2021 Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet. Diabetes and Endocrinology 9 225234. (https://doi.org/10.1016/S2213-8587(2100027-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Na HY, Yu HW, Kim W, Moon JH, Ahn CH, Choi SI, Kim YK, Choi JY & & Park SY 2022 Clinicopathological indicators for TERT promoter mutation in papillary thyroid carcinoma. Clinical Endocrinology 97 106115. (https://doi.org/10.1111/cen.14728)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Network CGAR 2014 Integrated genomic characterization of papillary thyroid carcinoma. Cell 159 676690. (https://doi.org/10.1016/j.cell.2014.09.050)

  • Nicorici D, Şatalan M, Edgren H, Kangaspeska S, Murumägi A, Kallioniemi O, Virtanen S & & Kilkku O 2014 FusionCatcher–a tool for finding somatic fusion genes in paired-end RNA-sequencing data. biorxiv [epub]. (https://doi.org/10.1101/011650)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paulsson JO, Mu N, Shabo I, Wang N, Zedenius J, Larsson C & & Juhlin CC 2018 TERT aberrancies: a screening tool for malignancy in follicular thyroid tumours. Endocrine-Related Cancer 25 723733. (https://doi.org/10.1530/ERC-18-0050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT & & Salzberg SL 2015 StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33 290295. (https://doi.org/10.1038/nbt.3122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pertea M, Kim D, Pertea GM, Leek JT & & Salzberg SL 2016 Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11 16501667. (https://doi.org/10.1038/nprot.2016.095)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Póvoa AA, Teixeira E, Bella-Cueto MR, Batista R, Pestana A, Melo M, Alves T, Pinto M, Sobrinho-Simões M, Maciel J, et al.2021 Genetic determinants for prediction of outcome of patients with papillary thyroid carcinoma. Cancers 13 2048. (https://doi.org/10.3390/cancers13092048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Powers AE, Marcadis AR, Lee M, Morris LGT & & Marti JL 2019 Changes in trends in thyroid cancer incidence in the United States, 1992 to 2016. JAMA 322 24402441. (https://doi.org/10.1001/jama.2019.18528)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ramlee MK, Wang J, Toh WX & & Li S 2016 Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes 7 50. (https://doi.org/10.3390/genes7080050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosvall BR, Kostiuk M, Williams J, Matkin A, Harris J, Seikaly H, O’Connell DA & & Biron VL 2021 Utility of droplet digital polymerase chain reaction for TERT and BRAF mutational profiling of thyroid nodules. BMC Cancer 21 1142. (https://doi.org/10.1186/s12885-021-08810-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rusinek D, Pfeifer A, Cieslicka M, Kowalska M, Pawlaczek A, Krajewska J, Szpak-Ulczok S, Tyszkiewicz T, Halczok M, Czarniecka A, et al.2020 TERT promoter mutations and their impact on gene expression profile in papillary thyroid carcinoma. Cancers 12 1597. (https://doi.org/10.3390/cancers12061597)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song YS, Lim JA, Choi H, Won JK, Moon JH, Cho SW, Lee KE, Park YJ, Yi KH, Park DJ, et al.2016 Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer 122 13701379. (https://doi.org/10.1002/cncr.29934)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanaka A, Matsuse M, Saenko V, Nakao T, Yamanouchi K, Sakimura C, Yano H, Nishihara E, Hirokawa M, Suzuki K, et al.2019 TERT mRNA expression as a novel prognostic marker in papillary thyroid carcinomas. Thyroid 29 11051114. (https://doi.org/10.1089/thy.2018.0695)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trybek T, Walczyk A, Gąsior-Perczak D, Pałyga I, Mikina E, Kowalik A, Hińcza K, Kopczyński J, Chrapek M, Góźdź S, et al.2019 Impact of BRAF V600E and TERT promoter mutations on response to therapy in papillary thyroid cancer. Endocrinology 160 23282338. (https://doi.org/10.1210/en.2019-00315)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uhrig S, Ellermann J, Walther T, Burkhardt P, Fröhlich M, Hutter B, Toprak UH, Neumann O, Stenzinger A, Scholl C, et al.2021 Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Research 31 448460. (https://doi.org/10.1101/gr.257246.119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Unal I 2017 Defining an optimal cut-point value in ROC analysis: an alternative approach. Computational and Mathematical Methods in Medicine 2017 3762651. (https://doi.org/10.1155/2017/3762651)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valavanidis A, Vlachogianni T & & Fiotakis C 2009 8-hydroxy-2’ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis and Ecotoxicology Reviews 27 120139. (https://doi.org/10.1080/10590500902885684)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wassermann J, Bernier M-O, Spano J-P, Lepoutre-Lussey C, Buffet C, Simon J-M, Ménégaux F, Tissier F, Leban M & & Leenhardt L 2016 Outcomes and prognostic factors in radioiodine refractory differentiated thyroid carcinomas. Oncologist 21 5058. (https://doi.org/10.1634/theoncologist.2015-0107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wong KS, Higgins SE, Marqusee E, Nehs MA, Angell T & & Barletta JA 2019 Tall cell variant of papillary thyroid carcinoma: impact of change in WHO definition and molecular analysis. Endocrine Pathology 30 4348. (https://doi.org/10.1007/s12022-018-9561-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, Pai S & & Bishop J 2014 BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. Journal of Clinical Oncology 32 27182726. (https://doi.org/10.1200/JCO.2014.55.5094)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Huang D, Saw PE & & Song E 2022 Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends in Immunology 43 523545. (https://doi.org/10.1016/j.it.2022.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation