Genomic profiling of primary and metastatic thyroid cancers

in Endocrine-Related Cancer
Authors:
Valdemar Máximo i3S Instituto de Investigação e Inovação em Saúde, Porto, Portugal
Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal

Search for other papers by Valdemar Máximo in
Current site
Google Scholar
PubMed
Close
,
Miguel Melo i3S Instituto de Investigação e Inovação em Saúde, Porto, Portugal
Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra, Medical Faculty, University of Coimbra, Coimbra, Portugal

Search for other papers by Miguel Melo in
Current site
Google Scholar
PubMed
Close
,
Yingjie Zhu Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, USA

Search for other papers by Yingjie Zhu in
Current site
Google Scholar
PubMed
Close
,
Andrea Gazzo Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, USA

Search for other papers by Andrea Gazzo in
Current site
Google Scholar
PubMed
Close
,
Manuel Sobrinho Simões i3S Instituto de Investigação e Inovação em Saúde, Porto, Portugal
Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal
Department of Pathology, Hospital São João, Porto 4200-319, Portugal

Search for other papers by Manuel Sobrinho Simões in
Current site
Google Scholar
PubMed
Close
,
Arnaud Da Cruz Paula i3S Instituto de Investigação e Inovação em Saúde, Porto, Portugal
Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal

Search for other papers by Arnaud Da Cruz Paula in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7694-8760
, and
Paula Soares i3S Instituto de Investigação e Inovação em Saúde, Porto, Portugal
Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal

Search for other papers by Paula Soares in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9607-6998

Correspondence should be addressed to A Da Cruz Paula: arnaud.paula@i3s.up.pt

*(A Da Cruz Paula and P Soares contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

The genetic repertoire of primary thyroid cancers (TCs) is well documented, but there is a considerable lack of molecular profiling in metastatic TCs. Here, we retrieved and analyzed the molecular and clinical features of 475 primary and metastatic TCs subjected to targeted DNA sequencing, from the cBioPortal database. The cohort included primary and metastatic samples from 276 papillary thyroid carcinomas (PTCs), 5 follicular thyroid carcinomas, 22 Hürthle cell carcinomas (HCCs), 127 poorly differentiated thyroid carcinomas (PDTCs), 30 anaplastic thyroid carcinomas (ATCs) and 15 medullary thyroid carcinomas. The ATCs had the highest tumor mutational burden and the HCCs the highest fraction of the genome altered. Compared to primary PTCs, the metastases had a significantly higher frequency of genetic alterations affecting TERT (51% vs 77%, P < 0.001), CDKN2A (2% vs 10%, P < 0.01), RET (2% vs 7%, P < 0.05), CDKN2B (1% vs 6%, P < 0.05) and BCOR (0% vs 4%, P < 0.05). The distant metastases had a significantly lower frequency of BRAF (64% vs 85%, P < 0.01) and a significantly higher frequency of NRAS (13% vs 3%, P < 0.05) hotspot mutations than the lymph node metastases. Metastases from HCCs and PDTCs were found to be enriched for NF1 (29%) and TP53 (18%) biallelic alterations, respectively. The frequency of subclonal mutations in ATCs was significantly higher than in PTCs (43% vs 25%, P < 0.01) and PDTCs (43% vs 22%, P < 0.01). Metastatic TCs are enriched in clinically informative genetic alterations such as RET translocations, BRAF hotspot mutations and NF1 biallelic losses that may be explored therapeutically.

Supplementary Materials

 

  • Collapse
  • Expand
  • Abe I & & Lam AK 2021 Anaplastic thyroid carcinoma: current issues in genomics and therapeutics. Current Oncology Reports 23 31. (https://doi.org/10.1007/s11912-021-01019-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aggarwal C, Thompson JC & & Carpenter EL 2021 Plasma tumor mutation burden and response to pembrolizumab-response. Clinical Cancer Research 27 1581. (https://doi.org/10.1158/1078-0432.CCR-20-4753)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa S, Auman JT, Balasundaram M, Balu S, Baylin SB, et al.2014 Integrated genomic characterization of papillary thyroid carcinoma. Cell 159 676690. (https://doi.org/10.1016/j.cell.2014.09.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Almendro V, Marusyk A & & Polyak K 2013 Cellular heterogeneity and molecular evolution in cancer. Annual Review of Pathology 8 277302. (https://doi.org/10.1146/annurev-pathol-020712-163923)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bae JS, Kim Y, Jeon S, Kim SH, Kim TJ, Lee S, Kim MH, Lim DJ, Lee YS & & Jung CK 2016 Clinical utility of tert promoter mutations and ALK rearrangement in thyroid cancer patients with a high prevalence of BRAF V600E mutation. Diagnostic Pathology 11 21. (https://doi.org/10.1186/s13000-016-0458-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Basolo F, Molinaro E, Agate L, Pinchera A, Pollina L, Chiappetta G, Monaco C, Santoro M, Fusco A, Miccoli P, et al.2001 RET protein expression has no prognostic impact on the long-term outcome of papillary thyroid carcinoma. European Journal of Endocrinology 145 599604. (https://doi.org/10.1530/eje.0.1450599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bradford D, Larkins E, Mushti SL, Rodriguez L, Skinner AM, Helms WS, Price LSL, Zirkelbach JF, Li Y, Liu J, et al.2021 FDA approval summary: selpercatinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions. Clinical Cancer Research 27 21302135. (https://doi.org/10.1158/1078-0432.CCR-20-3558)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cabanillas ME, McFadden DG & & Durante C 2016 Thyroid cancer. Lancet 388 27832795. (https://doi.org/10.1016/S0140-6736(1630172-6)

  • Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, et al.2012 Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology 30 413421. (https://doi.org/10.1038/nbt.2203)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen H, Luthra R, Routbort MJ, Patel KP, Cabanillas ME, Broaddus RR & & Williams MD 2018 Molecular profile of advanced thyroid carcinomas by next-generation sequencing: characterizing tumors beyond diagnosis for targeted therapy. Molecular Cancer Therapeutics 17 15751584. (https://doi.org/10.1158/1535-7163.MCT-17-0871)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chiappetta C, Proietti I, Soccodato V, Puggioni C, Zaralli R, Pacini L, Porta N, Skroza N, Petrozza V, Potenza C, et al.2015 BRAF and NRAS mutations are heterogeneous and not mutually exclusive in nodular melanoma. Applied Immunohistochemistry and Molecular Morphology 23 172177. (https://doi.org/10.1097/PAI.0000000000000071)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ciampi R, Romei C, Ramone T, Prete A, Tacito A, Cappagli V, Bottici V, Viola D, Torregrossa L, Ugolini C, et al.2019 Genetic landscape of somatic mutations in a large cohort of sporadic medullary thyroid carcinomas studied by next-generation targeted sequencing. iScience 20 324336. (https://doi.org/10.1016/j.isci.2019.09.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Da Cruz Paula A, da Silva EM, Segura SE, Pareja F, Bi R, Selenica P, Kim SH, Ferrando L, Vahdatinia M, Soslow RA, et al.2020 Genomic profiling of primary and recurrent adult granulosa cell tumors of the ovary. Modern Pathology 33 16061617. (https://doi.org/10.1038/s41379-020-0514-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Da Cruz Paula A, Delair DF, Ferrando L, Fix DJ, Soslow RA, Park KJ, Chiang S, Reis-Filho JS, Zehir A, Donoghue MTA, et al.2021 Genetic and molecular subtype heterogeneity in newly diagnosed early- and advanced-stage endometrial cancer. Gynecologic Oncology 161 535544. (https://doi.org/10.1016/j.ygyno.2021.02.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, Wolfe C, et al.2015 The global burden of cancer 2013. JAMA Oncology 1 505527. (https://doi.org/10.1001/jamaoncol.2015.0735)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ganly I & & McFadden DG 2019 Short review: genomic alterations in Hurthle cell carcinoma. Thyroid 29 471479. (https://doi.org/10.1089/thy.2019.0088)

  • Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, Seshan V, Nanjangud G, Eng S, Bose P, Kuo F, et al.2018 Integrated genomic analysis of Hurthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell 34 256270.e5. (https://doi.org/10.1016/j.ccell.2018.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ganly I, Liu EM, Kuo F, Makarov V, Dong Y, Park J, Gong Y, Gorelick AN, Knauf JA, Benedetti E, et al.2022 Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hurthle cell carcinoma. Science Advances 8 eabn9699. (https://doi.org/10.1126/sciadv.abn9699)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gopal RK, Kubler K, Calvo SE, Polak P, Livitz D, Rosebrock D, Sadow PM, Campbell B, Donovan SE, Amin S, et al.2018 Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hurthle cell carcinoma. Cancer Cell 34 242255.e5. (https://doi.org/10.1016/j.ccell.2018.06.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanahan D & & Weinberg RA 2011 Hallmarks of cancer: the next generation. Cell 144 646674. (https://doi.org/10.1016/j.cell.2011.02.013)

  • Heilmann AM, Subbiah V, Wang K, Sun JX, Elvin JA, Chmielecki J, Sherman SI, Murthy R, Busaidy NL, Subbiah I, et al.2016 Comprehensive genomic profiling of clinically advanced medullary thyroid carcinoma. Oncology 90 339346. (https://doi.org/10.1159/000445978)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang W, Sherman BT & & Lempicki RA 2009 Systematic and integrative analysis of large gene lists using David bioinformatics resources. Nature Protocols 4 4457. (https://doi.org/10.1038/nprot.2008.211)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ki DH, Oppel F, Durbin AD & & Look AT 2019 Mechanisms underlying synergy between DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors in NF1-associated malignant peripheral nerve sheath tumors. Oncogene 38 65856598. (https://doi.org/10.1038/s41388-019-0965-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim SH, Da Cruz Paula A, Basili T, Dopeso H, Bi R, Pareja F, da Silva EM, Gularte-Mérida R, Sun Z, Fujisawa S, et al.2020 Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary. Nature Communications 11 44. (https://doi.org/10.1038/s41467-019-13806-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim J, Bradford D, Larkins E, Pai-Scherf LH, Chatterjee S, Mishra-Kalyani PS, Wearne E, Helms WS, Ayyoub A, Bi Y, et al.2021 FDA approval summary: pralsetinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions. Clinical Cancer Research 27 54525456. (https://doi.org/10.1158/1078-0432.CCR-21-0967)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim SH, Basili T, Dopeso H, Da Cruz Paula A, Bi R, Bhaloo SI, Pareja F, Li Q, da Silva EM, Zhu Y, et al.2022 Recurrent WWTR1 S89W mutations and Hippo pathway deregulation in clear cell carcinomas of the cervix. Journal of Pathology 257 635649. (https://doi.org/10.1002/path.5910)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lan X, Bao H, Ge X, Cao J, Fan X, Zhang Q, Liu K, Zhan X, Tan Z, Zheng C, et al.2020 Genomic lanscape of metastatic papillary thyroid carcinoma and novel biomarkers for predicting distant metastasis. Cancer Science 111 21632173. (https://doi.org/10.1111/cas.14389)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogen S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, et al.2016 Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation 126 10521066. (https://doi.org/10.1172/JCI85271)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leiserson MD, Wu HT, Vandin F & & Raphael BJ 2015 CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer. Genome Biology 16 160. (https://doi.org/10.1186/s13059-015-0700-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu C, Liu Z, Chen T, Zeng W, Guo Y & & Huang T 2016 Tert promoter mutation and its association with clinicopathological features and prognosis of papillary thyroid cancer: a meta-analysis. Scientific Reports 6 36990. (https://doi.org/10.1038/srep36990)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lodish MB & & Stratakis CA 2008 RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer. Expert Review of Anticancer Therapy 8 625632. (https://doi.org/10.1586/14737140.8.4.625)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopes MBS 2017 The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathologica 134 521535. (https://doi.org/10.1007/s00401-017-1769-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marabelle A, Fakin M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH, et al.2020 Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncology 21 13531365. (https://doi.org/10.1016/S1470-2045(2030445-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martins RS, Jesus TT, Cardoso L, Soares P & & Vinagre J 2023 Personalized medicine in medullary thyroid carcinoma: a broad review of emerging treatments. Journal of Personalized Medicine 7 1132. (https://doi.org/10.3390/jpm13071132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maslon MM & & Hupp TR 2010 Drug discovery and mutant p53. Trends in Cell Biology 20 542555. (https://doi.org/10.1016/j.tcb.2010.06.005)

  • Masoodi T, Siraj AK, Siraj S, Azam S, Qadri Z, Albalawy WN, Parvathareddy SK, Al-Sobhi SS, Al-Dayel F, Alkuraya FS, et al.2020 Whole-exome sequencing of matched primary and metastatic papillary thyroid cancer. Thyroid 30 4256. (https://doi.org/10.1089/thy.2019.0052)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Melo M, Gaspar da Rocha A, Batista R, Vinagre J, Martins MJ, Costa G, Ribeiro C, Carrilho F, Leite V, Lobo C, et al.2017 Tert, BRAF, and NRAS in primary thyroid cancer and metastatic disease. Journal of Clinical Endocrinology and Metabolism 102 18981907. (https://doi.org/10.1210/jc.2016-2785)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mishra P, Laha D, Grant R & & Nilubol N 2021 Advances in biomarker-driven targeted therapies in thyroid cancer. Cancers 13 6194. (https://doi.org/10.3390/cancers13246194)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF & & Klempnauer J 2000 Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery 128 984993. (https://doi.org/10.1067/msy.2000.110845)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, Walch H, Chatila WK, Madupuri R, Kundra R, et al.2022 Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185 563575.e11. (https://doi.org/10.1016/j.cell.2022.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nikiforov YE 2002 RET/PTC rearrangement in thyroid tumors. Endocrine Pathology 13 316. (https://doi.org/10.1385/EP:13:1:03)

  • Nikiforov YE 2004 Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocrine Pathology 15 319327. (https://doi.org/10.1385/ep:15:4:319)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pak K, Suh S, Kim SJ & & Kim IJ 2014 Prognostic value of genetic mutations in thyroid cancer: a meta-analysis. Thyroid 25 6370. (https://doi.org/10.1089/thy.2014.0241)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rizvi AA, Karaesmen E, Morgan M, Preus L, Wang J, Sovic M, Hahn T & & Sucheston-Campbell LE 2019 Gwasurvivr: an R package for genome-wide survival analysis. Bioinformatics 35 19681970. (https://doi.org/10.1093/bioinformatics/bty920)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al.2018 Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173 321337. (https://doi.org/10.1016/j.cell.2018.03.035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sancisi V, Nicoli D, Ragazzi M, Piana S & & Ciarrocchi A 2012 BRAFV600E mutation does not mean distant metastasis in thyroid papillary carcinomas. Journal of Clinical Endocrinology and Metabolism 97 E1745E1749. (https://doi.org/10.1210/jc.2012-1526)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Máximo V, Botelho T, Seruca R & & Sobrinho Simões M 2003 BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22 45784580. (https://doi.org/10.1038/sj.onc.1206706)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ullman TM, Gray KD, Moore MD, Zarnegar R & & Fahley TJ 2018 Current controversies and future directions in the diagnosis and management of differentiated thyroid cancers. Gland Surgery 7 473486. (https://doi.org/10.21037/gs.2017.09.08)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ullman TM, Thiesmeyer JW, Lee YJ, Berg S, Mosquera JM, Elemento O, Fahley TJ, Scognamiglio T & & Houvras Y 2022 RET fusion-positive papillary thyroid cancers are associated with a more aggressive phenotype. Annals of Surgical Oncology 26 42664273. (https://doi.org/10.1245/s10434-022-11418-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ullrich NJ, Prabhu SP, Reddy AT, Fisher MJ, Packer R, Goldman S, Robison NJ, Gutmann DH, Viskochil DH, Allen JC, et al.2020 A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro-Oncology 22 15271535. (https://doi.org/10.1093/neuonc/noaa071)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, et al.2013 Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309 14931501. (https://doi.org/10.1001/jama.2013.3190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yip L, Nikiforova MN, Yoo JY, McCoy KL, Stang MT, Armstrong MJ, Nicholson KJ, Ohori NP, Coyne C, Hodak SP, et al.2015 Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Annals of Surgery 262 519524. (https://doi.org/10.1097/SLA.0000000000001420)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, Kim YA, Kim SJ, Cho SW, Won JK, et al.2019 Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nature Communications 10 2764. (https://doi.org/10.1038/s41467-019-10680-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, et al.2017 Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine 23 703713. (https://doi.org/10.1038/nm.4333)

    • PubMed
    • Search Google Scholar
    • Export Citation