Immunophenotyping with high-dimensional flow cytometry identifies Treg cell subsets associated with recurrence in papillary thyroid carcinoma

in Endocrine-Related Cancer
Authors:
Sijin Li Department of Thyroid Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China

Search for other papers by Sijin Li in
Current site
Google Scholar
PubMed
Close
,
Zhen Chen Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou, China

Search for other papers by Zhen Chen in
Current site
Google Scholar
PubMed
Close
,
Mengchu Liu School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China

Search for other papers by Mengchu Liu in
Current site
Google Scholar
PubMed
Close
,
Liang Li Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China

Search for other papers by Liang Li in
Current site
Google Scholar
PubMed
Close
,
Wensong Cai Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou, China

Search for other papers by Wensong Cai in
Current site
Google Scholar
PubMed
Close
,
Zhe-Xiong Lian Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China

Search for other papers by Zhe-Xiong Lian in
Current site
Google Scholar
PubMed
Close
,
Haixia Guan Department of Endocrinology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China

Search for other papers by Haixia Guan in
Current site
Google Scholar
PubMed
Close
, and
Bo Xu Department of Thyroid Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China

Search for other papers by Bo Xu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2259-8245

Correspondence should be addressed to H Guan or B Xu: guanhaixia@gdph.org.cn or eyboxu@scut.edu.cn
Restricted access
Rent on DeepDyve

Sign up for journal news

The activation of Treg cell subsets is critical for the prognosis of tumor patients; however, their heterogeneity and disease association in papillary thyroid carcinoma (PTC) need further investigation. We performed high-dimensional flow cytometry for immunophenotyping on thyroid tissues and matched peripheral blood samples from patients with multinodular goiters or PTC. We analyzed CD4+ T cell and Treg cell phenotypes and compared the recurrence-free survival of PTC patients with different Treg cell subset characteristics using TCGA. Furthermore, PTC recurrent and non-recurrent group were compared by multiplex immunohistochemistry. High-dimensional flow cytometry and bioinformatics analysis revealed an enrichment of Tregs in tumors compared with multinodular goiters and peripheral blood specimens. Moreover, effector Tregs (e-Tregs) as well as FOXP3+ non-Tregs were enriched in tumor samples, and the expression of CD39, PD-1, and CD103 increased on tumor Tregs. TCGA data analysis showed that individuals with CD39hi PD-1loCD103loe-Treghi and CD39loPD-1loCD103hie-Treghi expression patterns had a high recurrence rate. According to the multiplex immunohistochemistry and analysis, compared with non-recurrent group, the proportion of high recurrence rate effector Treg clusters (CD39+PD-1CD103 plus CD39PD-1CD103+) was increased in recurrent patients. Overall, our results highlight the potential of e-Treg subsets as future immunotherapy targets for PTC recurrence.

 

  • Collapse
  • Expand
  • Akimova T, Zhang T, Negorev D, Singhal S, Stadanlick J, Rao A, Annunziata M, Levine MH, Beier UH, Diamond JM, et al.2017 Human lung tumor FOXP3+ Tregs upregulate four “Treg-locking” transcription factors. JCI Insight 2 e94075. (https://doi.org/10.1172/jci.insight.94075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anz D, Mueller W, Golic M, Kunz WG, Rapp M, Koelzer VH, Ellermeier J, Ellwart JW, Schnurr M, Bourquin C, et al.2011 CD103 is a hallmark of tumor-infiltrating regulatory T cells. International Journal of Cancer 129 24172426. (https://doi.org/10.1002/ijc.25902)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, et al.2013 Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39 782795. (https://doi.org/10.1016/j.immuni.2013.10.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H & & Trajanoski Z 2017 Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Reports 18 248262. (https://doi.org/10.1016/j.celrep.2016.12.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng X, Tan X, Wang W, Zhang Z, Zhu R, Wu M, Li M, Chen Y, Liang Z, Zhu P, et al.2023 Long-chain acylcarnitines induce senescence of invariant natural killer T cells in hepatocellular carcinoma. Cancer Research 83 582594. (https://doi.org/10.1158/0008-5472.CAN-22-2273)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cunha LL, Morari EC, Guihen ACT, Razolli D, Gerhard R, Nonogaki S, Soares FA, Vassallo J & & Ward LS 2012 Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma. Clinical Endocrinology 77 918925. (https://doi.org/10.1111/j.1365-2265.2012.04482.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, et al.2005 Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. Journal of Clinical Investigation 115 36233633. (https://doi.org/10.1172/JCI25947)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M, Bogdanova T, Jarzab B, Dumont JE, Detours V & & Maenhaut C 2012 A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. British Journal of Cancer 107 9941000. (https://doi.org/10.1038/bjc.2012.302)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong W, Horiuchi K, Tokumitsu H, Sakamoto A, Noguchi E, Ueda Y & & Okamoto T 2019 Time-varying pattern of mortality and recurrence from papillary thyroid cancer: lessons from a long-term follow-up. Thyroid 29 802808. (https://doi.org/10.1089/thy.2018.0128)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dunn GP, Bruce AT, Ikeda H, Old LJ & & Schreiber RD 2002 Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology 3 991998. (https://doi.org/10.1038/ni1102-991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dunn GP, Old LJ & & Schreiber RD 2004 The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21 137148. (https://doi.org/10.1016/j.immuni.2004.07.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fang W, Ye L, Shen L, Cai J, Huang F, Wei Q, Fei X, Chen X, Guan H, Wang W, et al.2014 Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8. Carcinogenesis 35 17801787. (https://doi.org/10.1093/carcin/bgu060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, et al.2019 Immune and inflammatory cells in thyroid cancer microenvironment. International Journal of Molecular Sciences 20. (https://doi.org/10.3390/ijms20184413)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • French JD, Weber ZJ, Fretwell DL, Said S, Klopper JP & & Haugen BR 2010 Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism 95 23252333. (https://doi.org/10.1210/jc.2009-2564)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • French JD, Kotnis GR, Said S, Raeburn CD, Mcintyre RC, Klopper JP & & Haugen BR 2012 Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism 97 E934E943. (https://doi.org/10.1210/jc.2011-3428)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gogali F, Paterakis G, Rassidakis GZ, Kaltsas G, Liakou CI, Gousis P, Neonakis E, Manoussakis MN & & Liapi C 2012 Phenotypical analysis of lymphocytes with suppressive and regulatory properties (Tregs) and NK cells in the papillary carcinoma of thyroid. Journal of Clinical Endocrinology and Metabolism 97 14741482. (https://doi.org/10.1210/jc.2011-1838)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu J, Ni X, Pan X, Lu H, Lu Y, Zhao J, Guo Zheng S, Hippen KL, Wang X & & Lu L 2017 Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions. Cellular and Molecular Immunology 14 521528. (https://doi.org/10.1038/cmi.2016.30)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, et al.2005 The role of microRNA genes in papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America 102 1907519080. (https://doi.org/10.1073/pnas.0509603102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Janjua N & & Wreesmann VB 2018 Aggressive differentiated thyroid cancer. European Journal of Surgical Oncology 44 367377. (https://doi.org/10.1016/j.ejso.2017.09.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaczorowski M & & Jutel M 2013 Human T regulatory cells: on the way to cognition. Archivum Immunologiae et Therapiae Experimentalis 61 229236. (https://doi.org/10.1007/s00005-013-0217-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim S, Cho SW, Min HS, Kim KM, Yeom GJ, Kim EY, Lee KE, Yun YG, Park DJ & & Park YJ 2013 The expression of tumor-associated macrophages in papillary thyroid carcinoma. Endocrinology and Metabolism (Seoul, Korea) 28 192198. (https://doi.org/10.3803/EnM.2013.28.3.192)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim J, Gosnell JE & & Roman SA 2020 Geographic influences in the global rise of thyroid cancer. Nature Reviews. Endocrinology 16 1729. (https://doi.org/10.1038/s41574-019-0263-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono H, et al.2022 Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40 201218.e9. (https://doi.org/10.1016/j.ccell.2022.01.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li YY, Li SJ, Liu MC, Chen Z, Li L, Shen F, Liu QZ, Xu B & & Lian ZX 2023 B cells and tertiary lymphoid structures are associated with survival in papillary thyroid cancer. Journal of Endocrinological Investigation 46 22472256. (https://doi.org/10.1007/s40618-023-02072-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lim H, Devesa SS, Sosa JA, Check D & & Kitahara CM 2017 Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 317 13381348. (https://doi.org/10.1001/jama.2017.2719)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu WH, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas De St Groth B, et al.2006 CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) T reg cells. Journal of Experimental Medicine 203 17011711. (https://doi.org/10.1084/jem.20060772)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, Yun X, Gao M, Yu Y & & Li X 2015 Analysis of regulatory T cells frequency in peripheral blood and tumor tissues in papillary thyroid carcinoma with and without Hashimoto’s thyroiditis. Clinical and Translational Oncology 17 274280. (https://doi.org/10.1007/s12094-014-1222-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu L, Barbi J & & Pan F 2017 The regulation of immune tolerance by FOXP3. Nature Reviews. Immunology 17 703717. (https://doi.org/10.1038/nri.2017.75)

  • Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, et al.2017 Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nature Immunology 18 13321341. (https://doi.org/10.1038/ni.3868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsubayashi S, Kawai K, Matsumoto Y, Mukuta T, Morita T, Hirai K, Matsuzuka F, Kakudoh K, Kuma K & & Tamai H 1995 The correlation between papillary thyroid carcinoma and lymphocytic infiltration in the thyroid gland. Journal of Clinical Endocrinology and Metabolism 80 34213424. (https://doi.org/10.1210/jcem.80.12.8530576)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazzucchelli R & & Durum SK 2007 Interleukin-7 receptor expression: intelligent design. Nature Reviews. Immunology 7 144154. (https://doi.org/10.1038/nri2023)

  • Mehanna H, Al-Maqbili T, Carter B, Martin E, Campain N, Watkinson J, Mccabe C, Boelaert K & & Franklyn JA 2014 Differences in the recurrence and mortality outcomes rates of incidental and nonincidental papillary thyroid microcarcinoma: a systematic review and meta-analysis of 21 329 person-years of follow-up. Journal of Clinical Endocrinology and Metabolism 99 28342843. (https://doi.org/10.1210/jc.2013-2118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S & & Dal Maso L 2021 Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet. Diabetes and Endocrinology 9 225234. (https://doi.org/10.1016/S2213-8587(2100027-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, et al.2009 Functional delineation and differentiation dynamics of human CD4(+) T cells expressing the FoxP3 transcription factor. Immunity 30 899911. (https://doi.org/10.1016/j.immuni.2009.03.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mohr A, Malhotra R, Mayer G, Gorochov G & & Miyara M 2018 Human FOXP3(+) T regulatory cell heterogeneity. Clinical and Translational Immunology 7 e1005. (https://doi.org/10.1002/cti2.1005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishikawa H & & Sakaguchi S 2014 Regulatory T cells in cancer immunotherapy. Current Opinion in Immunology 27 17. (https://doi.org/10.1016/j.coi.2013.12.005)

  • Ryder M, Ghossein RA, Ricarte-Filho JCM, Knauf JA & & Fagin JA 2008 Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocrine-Related Cancer 15 10691074. (https://doi.org/10.1677/ERC-08-0036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ryu HS, Park YS, Park HJ, Chung YR, Yom CK, Ahn SH, Park YJ, Park SH & & Park SY 2014 Expression of indoleamine 2,3-dioxygenase and infiltration of FOXP3+ regulatory T cells are associated with aggressive features of papillary thyroid microcarcinoma. Thyroid 24 12321240. (https://doi.org/10.1089/thy.2013.0423)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sakaguchi S, Miyara M, Costantino CM & & Hafler DA 2010 FOXP3(+) regulatory T cells in the human immune system. Nature Reviews Immunology 10 490500. (https://doi.org/10.1038/nri2785)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saraiva DP, Jacinto A, Borralho P, Braga S & & Cabral MG 2018 HLA-DR in cytotoxic T lymphocytes predicts breast cancer patients’ response to neoadjuvant chemotherapy. Frontiers in Immunology 9 2605. (https://doi.org/10.3389/fimmu.2018.02605)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schreiber RD, Old LJ & & Smyth MJ 2011 Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331 15651570. (https://doi.org/10.1126/science.1203486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, et al.2006 Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. Journal of Experimental Medicine 203 16931700. (https://doi.org/10.1084/jem.20060468)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharma A & & Rudra D 2018 Emerging functions of regulatory T cells in tissue homeostasis. Frontiers in Immunology 9 883. (https://doi.org/10.3389/fimmu.2018.00883)

  • Siraj AK, Parvathareddy SK, Qadri Z, Siddiqui K, Al-Sobhi SS, Al-Dayel F & & Al-Kuraya KS 2020 Annual hazard rate of recurrence in middle eastern papillary thyroid cancer over a long-term follow-up. Cancers 12 3624. (https://doi.org/10.3390/cancers12123624)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun JH, Li YR, Chang KH, Liou MJ, Lin SF, Tsai SS, Yu MC, Hsueh C & & Chen ST 2022 Evaluation of recurrence risk in patients with papillary thyroid cancer through tumor-node-metastasis staging: A single-center observational study in Taiwan. Biomedical Journal 45 923930. (https://doi.org/10.1016/j.bj.2021.11.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szylberg Ł, Karbownik D & & Marszałek A 2016 The role of FOXP3 in human cancers. Anticancer Research 36 37893794.

  • Togashi Y & & Nishikawa H 2017 Regulatory T cells: molecular and cellular basis for immunoregulation. In Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity, Agriculturists, 327. Ed. Yoshimura A: Cham: Springer International Publishing. (https://doi.org/10.1007/82_2017_58)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Togashi Y, Shitara K & & Nishikawa H 2019 Regulatory T cells in cancer immunosuppression – implications for anticancer therapy. Nature Reviews Clinical Oncology 16 356371. (https://doi.org/10.1038/s41571-019-0175-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ugolini C, Elisei R, Proietti A, Pelliccioni S, Lupi C, Borrelli N, Viola D, Leocata P, Vitti P, Miccoli P, et al.2014 FoxP3 expression in papillary thyroid carcinoma: a possible resistance biomarker to iodine 131 treatment. Thyroid 24 339346. (https://doi.org/10.1089/thy.2012.0589)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, De La Chapelle A, et al.2007 Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proceedings of the National Academy of Sciences of the United States of America 104 28032808. (https://doi.org/10.1073/pnas.0610733104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viallard J-F, Blanco P, André M, Etienne G, Liferman F, Neau D, Vidal E, Moreau J-F & & Pellegrin J-L 2006 CD8+HLA-DR+ T lymphocytes are increased in common variable immunodeficiency patients with impaired memory B-cell differentiation. Clinical Immunology 119 5158. (https://doi.org/10.1016/j.clim.2005.11.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wennerberg E, Pfefferle A, Ekblad L, Yoshimoto Y, Kremer V, Kaminskyy VO, Juhlin CC, Höög A, Bodin I, Svjatoha V, et al.2014 Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells. Clinical Cancer Research 20 57335744. (https://doi.org/10.1158/1078-0432.CCR-14-0291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whiteside TL 2018 FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opinion on Therapeutic Targets 22 353363. (https://doi.org/10.1080/14728222.2018.1451514)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, et al.2006 FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126 375387. (https://doi.org/10.1016/j.cell.2006.05.042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xie Z, Li X, He Y, Wu S, Wang S, Sun J, He Y, Lun Y & & Zhang J 2020 Immune cell confrontation in the papillary thyroid carcinoma microenvironment. Frontiers in Endocrinology 11 570604. (https://doi.org/10.3389/fendo.2020.570604)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yano H, Andrews LP, Workman CJ & & Vignali DAA 2019 Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity. Immunology 157 232247. (https://doi.org/10.1111/imm.13067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao Y, Xu P, Ying T, Wang Y, Wang X, Shu L, Mo Z, Chen Z, Wang X, Wang W, et al.2021 Integrative analysis of DNA methylation and gene expression identified follicular thyroid cancer-specific diagnostic biomarkers. Frontiers in Endocrinology 12 736068. (https://doi.org/10.3389/fendo.2021.736068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D & & Benoist C 2018 Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nature Immunology 19 291301. (https://doi.org/10.1038/s41590-018-0051-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao Y, Zhang C, Zhu Y, Ding X, Zhou Y, Lv H, Lin Y, Wu Y, Shi B & & Fu J 2022 TREM1 fosters an immunosuppressive tumor microenvironment in papillary thyroid cancer. Endocrine-Related Cancer 29 7186. (https://doi.org/10.1530/ERC-21-0297)

    • PubMed
    • Search Google Scholar
    • Export Citation