Bioengineered in vitro three-dimensional tumor models in endocrine cancers

in Endocrine-Related Cancer
Authors:
Aleksander Skardal Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
Center for Cancer Engineering, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Aleksander Skardal in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2138-2453
,
Hemamylammal Sivakumar Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Hemamylammal Sivakumar in
Current site
Google Scholar
PubMed
Close
,
Marco A Rodriguez Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Marco A Rodriguez in
Current site
Google Scholar
PubMed
Close
,
Liudmila V Popova Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Liudmila V Popova in
Current site
Google Scholar
PubMed
Close
, and
Priya H Dedhia The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
Center for Cancer Engineering, The Ohio State University, Columbus, Ohio, USA
Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA

Search for other papers by Priya H Dedhia in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A Skardal or P Dedhia: skardal.1@osu.edu or priya.dedhia@osumc.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Graphical abstract

Abstract

Endocrine tumors are a heterogeneous cluster of malignancies that originate from cells that can secrete hormones. Examples include, but are not limited to, thyroid cancer, adrenocortical carcinoma, and neuroendocrine tumors. Many endocrine tumors are relatively slow to proliferate, and as such, they often do not respond well to common antiproliferative chemotherapies. Therefore, increasing attention has been given to targeted therapies and immunotherapies in these diseases. However, in contrast to other cancers, many endocrine tumors are relatively rare, and as a result, less is understood about their biology, including specific targets for intervention. Our limited understanding of such tumors is in part due to a limitation in model systems that accurately recapitulate and enable mechanistic exploration of these tumors. While mouse models and 2D cell cultures exist for some endocrine tumors, these models often may not accurately model nuances of human endocrine tumors. Mice differ from human endocrine physiology and 2D cell cultures fail to recapitulate the heterogeneity and 3D architectures of in vivo tumors. To complement these traditional cancer models, bioengineered 3D tumor models, such as organoids and tumor-on-a-chip systems, have advanced rapidly in the past decade. However, these technologies have only recently been applied to most endocrine tumors. In this review we provide descriptions of these platforms, focusing on thyroid, adrenal, and neuroendocrine tumors and how they have been and are being applied in the context of endocrine tumors.

 

  • Collapse
  • Expand
  • Aleman J & & Skardal A 2018 A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnology and Bioengineering 116 936944. (https://doi.org/10.1002/bit.26871)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aleman J, George SK, Herberg S, Devarasetty M, Porada CD, Skardal A & & Almeida-Porada G 2019 Deconstructed microfluidic bone marrow On-A-chip to study normal and malignant hemopoietic cell-niche interactions. Small 15 e1902971. (https://doi.org/10.1002/smll.201902971)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • April-Monn SL, Wiedmer T, Skowronska M, Maire R, Schiavo Lena M, Trippel M, Di Domenico A, Muffatti F, Andreasi V, Capurso G, et al.2021 Three-dimensional primary cell culture: a novel preclinical model for pancreatic neuroendocrine tumors. Neuroendocrinology 111 273287. (https://doi.org/10.1159/000507669)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Avena P, De Luca A, Chimento A, Nocito MC, Sculco S, La Padula D, Zavaglia L, Giulietti M, Hantel C, Sirianni R, et al.2022 Estrogen related receptor alpha (ERRalpha) a bridge between metabolism and adrenocortical cancer progression. Cancers 14. (https://doi.org/10.3390/cancers14163885)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baltazar T, Kajave NS, Rodriguez M, Chakraborty S, Jiang B, Skardal A, Kishore V, Pober JS & & Albanna MZ 2022 Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: a comparative in vitro and in vivo study. Journal of Biomedical Materials Research 110 23232337. (https://doi.org/10.1002/jbm.b.35080)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baregamian N, Sekhar KR, Krystofiak ES, Vinogradova M, Thomas G, Mannoh E, Solorzano CC, Kiernan CM, Mahadevan-Jansen A, Abumrad N, et al.2023 Engineering functional 3-dimensional patient-derived endocrine organoids for broad multiplatform applications. Surgery 173 6775. (https://doi.org/10.1016/j.surg.2022.09.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Belfiore A & & Perks CM 2013 Grand challenges in cancer endocrinology: endocrine related cancers, an expanding concept. Frontiers in Endocrinology 4 141. (https://doi.org/10.3389/fendo.2013.00141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ben-David U, Beroukhim R & & Golub TR 2019 Genomic evolution of cancer models: perils and opportunities. Nature Reviews. Cancer 19 97109. (https://doi.org/10.1038/s41568-018-0095-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berger AJ, Renner CM, Hale I, Yang X, Ponik SM, Weisman PS, Masters KS & & Kreeger PK 2020 Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling. Matrix Biology 85–86 8093. (https://doi.org/10.1016/j.matbio.2019.07.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR & & Khademhosseini A 2014 Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release 190 8293. (https://doi.org/10.1016/j.jconrel.2014.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bresciani G, Hofland LJ, Dogan F, Giamas G, Gagliano T & & Zatelli MC 2019 Evaluation of spheroid 3D culture methods to study a pancreatic neuroendocrine neoplasm cell line. Frontiers in Endocrinology 10 682. (https://doi.org/10.3389/fendo.2019.00682)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calucho M, Cheng Z, Nguyen HT, Shihabi AA, Gonzalez-Cantu H, Guo Q, Thaker M, Bechmann N, Eisenhofer G, Ding Y, et al.2023 Abstract 195: establishment and validation of pheochromocytoma organoids for high-throughput drug screening. Cancer Research 83 195. (https://doi.org/10.1158/1538-7445.AM2023-195)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen D, Tan Y, Li Z, Li W, Yu L, Chen W, Liu Y, Liu L, Guo L, Huang W, et al.2021 Organoid cultures derived from patients with papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism 106 14101426. (https://doi.org/10.1210/clinem/dgab020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chew D, Green V, Riley A, England RJ & & Greenman J 2020 The changing face of in vitro culture models for thyroid cancer research: a systematic literature review. Frontiers in Surgery 7 43. (https://doi.org/10.3389/fsurg.2020.00043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark CC, Aleman J, Mutkus L & & Skardal A 2019 A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles. Bioprinting 16. (https://doi.org/10.1016/j.bprint.2019.e00058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Darba J & & Marsa A 2019 Exploring the current status of neuroendocrine tumours: a population-based analysis of epidemiology, management and use of resources. BMC Cancer 19 1226. (https://doi.org/10.1186/s12885-019-6412-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T & & Yao JC 2017 Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncology 3 13351342. (https://doi.org/10.1001/jamaoncol.2017.0589)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dedhia PH, Bertaux-Skeirik N, Zavros Y & & Spence JR 2016 Organoid models of human gastrointestinal development and disease. Gastroenterology 150 10981112. (https://doi.org/10.1053/j.gastro.2015.12.042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dedhia PH, Sivakumar H, Rodriguez MA, Nairon KG, Zent JM, Zheng X, Jones K, Popova LV, Leight JL & & Skardal A 2023 A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity. Scientific Reports 13 15508. (https://doi.org/10.1038/s41598-023-42659-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Devarasetty M, Mazzocchi AR & & Skardal A 2018 Application of bioengineered 3D tissue and tumor organoids in drug development and precision medicine: current and future. BioDrugs 32 5368. (https://doi.org/10.1007/s40259-017-0258-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al.2018 Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174 15861598.e12. (https://doi.org/10.1016/j.cell.2018.07.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ear PH, Li G, Wu M, Abusada E, Bellizzi AM & & Howe JR 2019 Establishment and characterization of small bowel neuroendocrine tumor spheroids. Journal of Visualized Experiments 152. (https://doi.org/10.3791/60303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fankhauser M, Bechmann N, Lauseker M, Goncalves J, Favier J, Klink B, William D, Gieldon L, Maurer J, Spottl G, et al.2019 Synergistic highly potent targeted drug combinations in different pheochromocytoma models including human tumor cultures. Endocrinology 160 26002617. (https://doi.org/10.1210/en.2019-00410)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forsythe S, Mehta N, Devarasetty M, Sivakumar H, Gmeiner W, Soker S, Votanopoulos K & & Skardal A 2019 Development of a colorectal cancer 3D micro-tumor construct platform from cell lines and patient tumor biospecimens for standard-of-care and experimental drug screening. Annals of Biomedical Engineering 48 940952. (https://doi.org/10.1007/s10439-019-02269-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, et al.2016 A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18 827838. (https://doi.org/10.1016/j.stem.2016.04.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grimm D, Bauer J, Kromer E, Steinbach P, Riegger G & & Hofstadter F 1995 Human follicular and papillary thyroid carcinoma cells interact differently with human venous endothelial cells. Thyroid 5 155164. (https://doi.org/10.1089/thy.1995.5.155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gulde S, Foscarini A, April-Monn SL, Genio E, Marangelo A, Satam S, Helbling D, Falconi M, Toledo RA, Schrader J, et al.2022 Combined targeting of pathogenetic mechanisms in pancreatic neuroendocrine tumors elicits synergistic antitumor effects. Cancers 14. (https://doi.org/10.3390/cancers14225481)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haider MS, Schreiner J, Kendl S, Kroiss M & & Luxenhofer R 2020 A micellar mitotane formulation with high drug-loading and solubility: physico-chemical characterization and cytotoxicity studies in 2D and 3D in vitro tumor models. Macromolecular Bioscience 20 e1900178. (https://doi.org/10.1002/mabi.201900178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hainline KM, Gu F, Handley JF, Tian YF, Wu Y, de Wet L, Vander Griend DJ & & Collier JH 2019 Self-assembling peptide gels for 3D prostate cancer spheroid culture. Macromolecular Bioscience 19 e1800249. (https://doi.org/10.1002/mabi.201800249)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herring B, Jang S, Whitt J, Goliwas K, Aburjania Z, Dudeja V, Ren B, Berry J, Bibb J, Frost A, et al.2021 Ex Vivo modeling of human neuroendocrine tumors in tissue surrogates. Frontiers in Endocrinology 12 710009. (https://doi.org/10.3389/fendo.2021.710009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jabbari E, Sarvestani SK, Daneshian L & & Moeinzadeh S 2015 Optimum 3D matrix stiffness for maintenance of cancer stem cells is dependent on tissue origin of cancer cells. PLoS One 10 e0132377. (https://doi.org/10.1371/journal.pone.0132377)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawasaki K, Toshimitsu K, Matano M, Fujita M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A, Takahashi S, et al.2020 An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell 183 14201435.e21. (https://doi.org/10.1016/j.cell.2020.10.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kopp S, Warnke E, Wehland M, Aleshcheva G, Magnusson NE, Hemmersbach R, Corydon TJ, Bauer J, Infanger M & & Grimm D 2015 Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity. Scientific Reports 5 16691. (https://doi.org/10.1038/srep16691)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kyriakopoulou K, Koutsakis C, Piperigkou Z & & Karamanos NK 2023 Recreating the extracellular matrix: novel 3D cell culture platforms in cancer research. FEBS Journal 290 52385247. (https://doi.org/10.1111/febs.16778)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latteyer S, Tiedje V, Schilling B & & Fuhrer D 2016 Perspectives for immunotherapy in endocrine cancer. Endocrine-Related Cancer 23 R469R484. (https://doi.org/10.1530/ERC-16-0169)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee MA, Bergdorf KN, Phifer CJ, Jones CY, Byon SY, Sawyer LM, Bauer JA & & Weiss VL 2020 Novel three-dimensional cultures provide insights into thyroid cancer behavior. Endocrine-Related Cancer 27 111121. (https://doi.org/10.1530/ERC-19-0374)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lichtenauer UD, Shapiro I, Osswald A, Meurer S, Kulle A, Reincke M, Riepe F & & Beuschlein F 2013 Characterization of NCI-H295R cells as an in vitro model of hyperaldosteronism. Hormone and Metabolic Research 45 124129. (https://doi.org/10.1055/s-0032-1323810)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z & & Hu N 2021 Tumor-on-a-chip: from bioinspired design to biomedical application. Microsystems and Nanoengineering 7 50. (https://doi.org/10.1038/s41378-021-00277-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maloney E, Clark C, Sivakumar H, Yoo K, Aleman J, Rajan SAP, Forsythe S, Mazzocchi A, Laxton AW, Tatter SB, et al.2020 Immersion bioprinting of tumor organoids in multi-well plates for increasing chemotherapy screening throughput. Micromachines (Basel) 11. (https://doi.org/10.3390/mi11020208)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazzocchi AR, Soker S & & Skardal A 2017 Biofabrication technologies for developing in vitro tumor models. In Tumor Organoids, pp 51–70. Eds. Soker S, Skardal A. Berlin, Germany: Springer Nature. (https://doi.org/10.1007/978-3-319-60511-1_4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazzocchi AR, Rajan SAP, Votanopoulos KI, Hall AR & & Skardal A 2018 In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Scientific Reports 8 2886. (https://doi.org/10.1038/s41598-018-21200-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazzocchi A, Devarasetty M, Herberg S, Petty WJ, Marini F, Miller LD, Kucera GL, Dukes DK, Ruiz J, Skardal A, et al.2019 Pleural Effusion Aspirate for use in 3D Lung Cancer Modeling and Chemotherapy Screening. ACS Biomaterials Science and Engineering 5 19371943. (https://doi.org/10.1021/acsbiomaterials.8b01356)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mehta G, Hsiao AY, Ingram M, Luker GD & & Takayama S 2012 Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release 164 192204. (https://doi.org/10.1016/j.jconrel.2012.04.045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nairon KG, Rajan N, Ringel MD & & Skardal A 2023 RCAN1-4 suppresses metastatic invasion and tumor cell proliferation in a 3D thyroid metastasis-on-a-chip model. In Tissue Engineering & Regenerative Medicine International Society - Americas 2023 Annual Conference and Exhibition. Boston, MA, USA: TERMIS. (https://doi.org/10.1089/ten.tea.2023.29041.abstracts)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Panek M, Grabacka M & & Pierzchalska M 2018 The formation of intestinal organoids in a hanging drop culture. Cytotechnology 70 10851095. (https://doi.org/10.1007/s10616-018-0194-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedron S, Becka E & & Harley BA 2015 Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Advanced Materials 27 15671572. (https://doi.org/10.1002/adma.201404896)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedron S, Polishetty H, Pritchard AM, Mahadik BP, Sarkaria JN & & Harley BAC 2017 Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS Communications 7 442449. (https://doi.org/10.1557/mrc.2017.85)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR & & Khademhosseini A 2014 Organs-on-a-chip: a new tool for drug discovery. Expert Opinion on Drug Discovery 9 335352. (https://doi.org/10.1517/17460441.2014.886562)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prestwich GD 2008 Evaluating drug toxicity and efficacy in three dimensions: using synthetic extracellular matrices in drug discovery. Accounts of Chemical Research 41 139148. (https://doi.org/10.1021/ar7000827)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajan SAP, Skardal A & & Hall AR 2020a Multi-domain photopatterned 3D tumor constructs in a micro-physiological system for analysis, quantification, and isolation of infiltrating cells. Advanced Biosystems 4 e1900273. (https://doi.org/10.1002/adbi.201900273)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajan SAP, Aleman J, Wan M, Pourhabibi Zarandi N, Nzou G, Murphy S, Bishop CE, Sadri-Ardekani H, Shupe T, Atala A, et al.2020b Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomaterialia 106 124135. (https://doi.org/10.1016/j.actbio.2020.02.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rico K, Duan S, Pandey RL, Chen Y, Chakrabarti JT, Starr J, Zavros Y, Else T, Katona BW, Metz DC, et al.2021 Genome analysis identifies differences in the transcriptional targets of duodenal versus pancreatic neuroendocrine tumours. BMJ Open Gastroenterology 8. (https://doi.org/10.1136/bmjgast-2021-000765)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodrigues J, Heinrich MA, Teixeira LM & & Prakash J 2021 3D in vitro model (R)evolution: unveiling tumor-stroma interactions. Trends in Cancer 7 249264. (https://doi.org/10.1016/j.trecan.2020.10.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmeichel KL & & Bissell MJ 2003 Modeling tissue-specific signaling and organ function in three dimensions. Journal of Cell Science 116 23772388. (https://doi.org/10.1242/jcs.00503)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, Aft R, Fields RC & & George SC 2018 Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab on a Chip 18 36873702. (https://doi.org/10.1039/c8lc00596f)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sivakumar H, Devarasetty M, Kram DE, Strowd RE & & Skardal A 2020 Multi-cell type glioblastoma tumor spheroids for evaluating sub-population-specific drug response. Frontiers in Bioengineering and Biotechnology 8 538663. (https://doi.org/10.3389/fbioe.2020.538663)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sivakumar H, Miller BS, Nairon KG, Zheng XG, Phay JE, Kirschner LS, Skardal A & & Dedhia PH 2021 Generation of an organoid model of adrenocortical carcinoma. American Association of Endocrine Surgeons 41st Annual Meeting. Virtual. AAES.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sivakumar H, Dedhia PH & & Skardal A 2023 Establishment of an organoid model for adrenal cortical carcinoma. In Tissue Engineering & Regenerative Medicine International Society - Americas 2023 Annual Conference and Exhibition. Boston, MA, USA: TERMIS. (https://doi.org/10.1089/ten.tea.2023.29041.abstracts)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A 2016 Biopolymers for in vitro tissue model biofabrication. In Biopolymers for Medical Applications. Eds. Ruso JM, & Messina PV. Boca Raton, FL, USA: CRC Press (https://doi.org/10.1201/9781315368863).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A, Smith L, Bharadwaj S, Atala A, Soker S & & Zhang Y 2012 Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 33 45654575. (https://doi.org/10.1016/j.biomaterials.2012.03.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A, Devarasetty M, Rodman C, Atala A & & Soker S 2015 Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Annals of Biomedical Engineering 43 23612373. (https://doi.org/10.1007/s10439-015-1298-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A, Shupe T & & Atala A 2016a Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discovery Today 21 13991411. (https://doi.org/10.1016/j.drudis.2016.07.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A, Devarasetty M, Forsythe S, Atala A & & Soker S 2016b A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnology and Bioengineering 113 20202032. (https://doi.org/10.1002/bit.25950)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike ZY, Shin SR, Zhao L, Aleman J, et al.2017a Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports 7 8837. (https://doi.org/10.1038/s41598-017-08879-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, et al.2017b Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports 7 8837. (https://doi.org/10.1038/s41598-017-08879-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skardal A, Aleman J, Forsythe S, Rajan S, Murphy S, Devarasetty M, Pourhabibi Zarandi N, Nzou G, Wicks R, Sadri-Ardekani H, et al.2020 Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication 12 025017. (https://doi.org/10.1088/1758-5090/ab6d36)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sondorp LHJ, Ogundipe VML, Groen AH, Kelder W, Kemper A, Links TP, Coppes RP & & Kruijff S 2020 Patient-derived papillary thyroid cancer organoids for radioactive iodine refractory screening. Cancers 12. (https://doi.org/10.3390/cancers12113212)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sondorp LHJ, Jager EC, Antunes IF, Maturi R, Jansen L, Zandee WT, Brouwers AH, Links TP, Coppes RP & & Kruijff S 2023 Patient-derived medullary thyroid cancer organoids; a model for patient-tailored drug and PET-tracer screening. bioRxiv. (https://doi.org/10.1101/2023.09.18.558266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Votanopoulos KI, Mazzocchi A, Sivakumar H, Forsythe S, Aleman J, Levine EA & & Skardal A 2019a Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study. Annals of Surgical Oncology 26 139147. (https://doi.org/10.1245/s10434-018-7008-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Votanopoulos KI, Forsythe S, Sivakumar H, Mazzocchi A, Aleman J, Miller L, Levine E, Triozzi P & & Skardal A 2019b Model of patient-specific immune-enhanced organoids for immunotherapy screening: feasibility study. Annals of Surgical Oncology 27 19561967. (https://doi.org/10.1245/s10434-019-08143-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Votanopoulos KI, Forsythe S, Sivakumar H, Mazzocchi A, Aleman J, Miller L, Levine E, Triozzi P & & Skardal A 2020 Model of patient-specific immune-enhanced organoids for immunotherapy screening: feasibility study. Annals of Surgical Oncology 27 19561967. (https://doi.org/10.1245/s10434-019-08143-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang T & & Rainey WE 2012 Human adrenocortical carcinoma cell lines. Molecular and Cellular Endocrinology 351 5865. (https://doi.org/10.1016/j.mce.2011.08.041)

  • Wang C, Saji M, Justiniano SE, Yusof AM, Zhang X, Yu L, Fernandez S, Wakely P Jr, La Perle K, Nakanishi H, et al.2017 RCAN1-4 is a thyroid cancer growth and metastasis suppressor. JCI Insight 2 e90651. (https://doi.org/10.1172/jci.insight.90651)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang J, Xu W, Qian J, Wang Y, Hou G & & Suo A 2022a Photo-crosslinked hyaluronic acid hydrogel as a biomimic extracellular matrix to recapitulate in vivo features of breast cancer cells. Colloids and Surfaces. B, Biointerfaces 209 112159. (https://doi.org/10.1016/j.colsurfb.2021.112159)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang K, Schutze I, Gulde S, Bechmann N, Richter S, Helm J, Lauseker M, Maurer J, Reul A, Spoettl G, et al.2022b Personalized drug testing in human pheochromocytoma/paraganglioma primary cultures. Endocrine-Related Cancer 29 285306. (https://doi.org/10.1530/ERC-21-0355)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang M, Yu H, Zhang T, Cao L, Du Y, Xie Y, Ji J & & Wu J 2022c In-depth comparison of Matrigel dissolving methods on proteomic profiling of organoids. Molecular and Cellular Proteomics 21 100181. (https://doi.org/10.1016/j.mcpro.2021.100181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wong C, Vosburgh E, Levine AJ, Cong L & & Xu EY 2012 Human neuroendocrine tumor cell lines as a three-dimensional model for the study of human neuroendocrine tumor therapy. Journal of Visualized Experiments 66 e4218. (https://doi.org/10.3791/4218)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao H, Liang J, Liu S, Zhang Q, Xie F, Kong X, Guo S, Wang R, Fu R, Ye Z, et al.2021 Proteomics and organoid culture reveal the underlying pathogenesis of Hashimoto's thyroiditis. Frontiers in Immunology 12 784975. (https://doi.org/10.3389/fimmu.2021.784975)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoshida T, Suganuma N, Sato S, Toda S, Nakayama H, Masudo K, Okubo Y, Hayashi H, Yokose T, Koshikawa N, et al.2020 Membrane type 1 matrix metalloproteinase regulates anaplastic thyroid carcinoma cell growth and invasion into the collagen matrix. Biochemical and Biophysical Research Communications 529 11951200. (https://doi.org/10.1016/j.bbrc.2020.06.043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, et al.2017 Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. PNAS 114 E2293E2302. (https://doi.org/10.1073/pnas.1612906114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng F, Fu F, Cheng Y, Wang C, Zhao Y & & Gu Z 2016 Organ-on-a-chip systems: microengineering to biomimic living systems. Small 12 22532282. (https://doi.org/10.1002/smll.201503208)

    • PubMed
    • Search Google Scholar
    • Export Citation