A zebrafish xenotransplant model of anaplastic thyroid cancer to study tumor microenvironment and innate immune cell interactions in vivo

in Endocrine-Related Cancer
Authors:
Cassia Michael Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA

Search for other papers by Cassia Michael in
Current site
Google Scholar
PubMed
Close
,
Juliana Moreira Mendonça-Gomes Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA

Search for other papers by Juliana Moreira Mendonça-Gomes in
Current site
Google Scholar
PubMed
Close
,
Clinton Walton DePaolo Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA

Search for other papers by Clinton Walton DePaolo in
Current site
Google Scholar
PubMed
Close
,
Antonio Di Cristofano Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, New York, USA
Montefiore-Einstein Comprehensive Cancer Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York, USA

Search for other papers by Antonio Di Cristofano in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2537-3228
, and
Sofia de Oliveira Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
Montefiore-Einstein Comprehensive Cancer Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York, USA
Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, New York, USA
Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA

Search for other papers by Sofia de Oliveira in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0893-111X

Correspondence should be addressed to S De Oliveira or A Di Cristofano: sofia.deoliveira@einsteinmed.edu or antonio.dicristofano@einsteinmed.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Anaplastic thyroid cancer (ATC) is of the most aggressive thyroid cancer. While ATC is rare, it accounts for a disproportionately high number of thyroid cancer-related deaths. Here, we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643)-derived fluorescently labeled ATC cell lines, we show these cell lines display different engraftment rates, mass volume, proliferation, cell death, angiogenic potential, and neutrophil and macrophage recruitment and infiltration. Next, using a PIP-FUCCI reporter to track proliferation in vivo, we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 h to understand cellular dynamics in the tumor microenvironment at the single-cell level. Lastly, we tested two drug treatments, AZD2014 and a combination therapy of dabrafenib and trametinib, to show our model could be used as an effective screening platform for new therapeutic compounds for ATC. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.

Supplementary Materials

 

  • Collapse
  • Expand
  • Al-Hamaly MA, Turner LT, Rivera-Martinez A, Rodriguez A & & Blackburn JS 2023 Zebrafish cancer avatars: a translational platform for analyzing tumor heterogeneity and predicting patient outcomes. International Journal of Molecular Sciences 24. (https://doi.org/10.3390/ijms24032288)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Astone M, Dankert EN, Alam SK & & Hoeppner LH 2017 Fishing for cures: the alLURE of using zebrafish to develop precision oncology therapies. npj Precision Oncology 1. (https://doi.org/10.1038/s41698-017-0043-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bauerle KT, Schweppe RE, Lund G, Kotnis G, Deep G, Agarwal R, Pozdeyev N, Wood WM & & Haugen BR 2014 Nuclear factor κB-dependent regulation of angiogenesis, and metastasis in an in vivo model of thyroid cancer is associated with secreted interleukin-8. Journal of Clinical Endocrinology and Metabolism 99 E1436E1444. (https://doi.org/10.1210/jc.2013-3636)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cabezas-Sáinz P, Pensado-López A, Sáinz Jr B & & Sánchez L 2020 Modeling cancer using zebrafish xenografts: drawbacks for mimicking the human microenvironment. Cells 9. (https://doi.org/10.3390/cells9091978)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang CF, Yang MH, Lee JH, Shih SR, Lin CH, Chen CP, Wu CE & & Lu JY 2022 The impact of BRAF targeting agents in advanced anaplastic thyroid cancer: a multi-institutional retrospective study in Taiwan. American Journal of Cancer Research 12 53425350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Costa B, Estrada MF, Mendes RV & & Fior R 2020a Zebrafish avatars towards personalized medicine-A comparative review between avatar models. Cells 9. (https://doi.org/10.3390/cells9020293)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Costa B, Ferreira S, Povoa V, Cardoso MJ, Vieira S, Stroom J, Fidalgo P, Rio-Tinto R, Figueiredo N, Pares O, et al.2020b Developments in zebrafish avatars as radiotherapy sensitivity reporters - towards personalized medicine. EBiomedicine 51 102578. (https://doi.org/10.1016/j.ebiom.2019.11.039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cristinziano L, Modestino L, Loffredo S, Varricchi G, Braile M, Ferrara AL, de Paulis A, Antonelli A, Marone G & & Galdiero MR 2020 Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. Journal of Immunology 204 13621372. (https://doi.org/10.4049/jimmunol.1900543)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Oliveira S, Houseright RA, Graves AL, Golenberg N, Korte BG, Miskolci V & & Huttenlocher A 2019 Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. Journal of Hepatology 70 710721. (https://doi.org/10.1016/j.jhep.2018.11.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dudziak K, Nowak M & & Sozoniuk M 2022 One host-multiple applications: zebrafish (Danio rerio) as promising model for studying human cancers and pathogenic diseases. International Journal of Molecular Sciences 23. (https://doi.org/10.3390/ijms231810255)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fazio M, Ablain J, Chuan Y, Langenau DM & & Zon LI 2020 Zebrafish patient avatars in cancer biology and precision cancer therapy. Nature Reviews. Cancer 20 263273. (https://doi.org/10.1038/s41568-020-0252-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feliz-Norberto M, Michael C & & de Oliveira S 2021 Neutrophil reverse migration from liver fuels neutrophilic inflammation to tissue injury in nonalcoholic steatohepatitis. bioRxiv [epub]. (https://doi.org/10.1101/2021.10.03.462893)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fior R, Povoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N & & Ferreira MG 2017 Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proceedings of the National Academy of Sciences of the United States of America 114 E8234E8243. (https://doi.org/10.1073/pnas.1618389114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gabellini C, Gomez-Abenza E, Ibanez-Molero S, Tupone MG, Perez-Oliva AB, de Oliveira S, Del Bufalo D & & Mulero V 2018 Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. International Journal of Cancer 142 584596. (https://doi.org/10.1002/ijc.31075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galdiero MR, Varricchi G, Loffredo S, Bellevicine C, Lansione T, Ferrara AL, Iannone R, di Somma S, Borriello F & Clery E et al.2018 Potential involvement of neutrophils in human thyroid cancer. PLoS One 13 e0199740. (https://doi.org/10.1371/journal.pone.0199740)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gamble JT, Elson DJ, Greenwood JA, Tanguay RL & & Kolluri SK 2021 The zebrafish xenograft models for investigating cancer and cancer therapeutics. Biology (Basel) 10. (https://doi.org/10.3390/biology10040252)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Golenberg N, Squirrell JM, Bennin DA, Rindy J, Pistono PE, Eliceiri KW, Shelef MA, Kang J & & Huttenlocher A 2020 Citrullination regulates wound responses and tissue regeneration in zebrafish. Journal of Cell Biology 219 e201908164. (https://doi.org/10.1083/jcb.201908164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grant GD, Kedziora KM, Limas JC, Cook JG & & Purvis JE 2018 Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI. Cell Cycle 17 24962516. (https://doi.org/10.1080/15384101.2018.1547001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanahan D & & Weinberg R A 2011 Hallmarks of cancer: the next generation. Cell 144 646674. (https://doi.org/10.1016/j.cell.2011.02.013)

  • Hason M & & Bartůněk P 2019 Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes (Basel) 10. (https://doi.org/10.3390/genes10110935)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirchberger S, Sturtzel C, Pascoal S & & Distel M 2017 Quo natas, Danio?-Recent progress in modeling cancer in zebrafish. Frontiers in Oncology 7 186. (https://doi.org/10.3389/fonc.2017.00186)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lawson ND & & Weinstein BM 2002 In vivo imaging of embryonic vascular development using transgenic zebrafish. Developmental Biology 248 307318. (https://doi.org/10.1006/dbio.2002.0711)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li S, Sheng J, Liu Z, Fan Y, Zhang C, Lv T, Hu S, Jin J, Yu W & & Song Y 2021 Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer cells. Journal of Cellular and Molecular Medicine 25 24362449. (https://doi.org/10.1111/jcmm.16155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Q, Sun W & & Zhang H 2022 Roles and new insights of macrophages in the tumor microenvironment of thyroid cancer. Frontiers in Pharmacology 13 875384. (https://doi.org/10.3389/fphar.2022.875384)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu C, Liu Y, Ali NM, Zhang B & & Cui X 2023 The role of innate immune cells in the tumor microenvironment and research progress in antitumor therapy. Frontiers in Immunology 13 1039260. (https://doi.org/10.3389/fimmu.2022.1039260)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luo Y, Yang Y-C, Ma B, Xu W-B, Liao T & & Wang Y 2022 Integrated analysis of novel macrophage related signature in anaplastic thyroid cancer. Endocrine 78 517530. (https://doi.org/10.1007/s12020-022-03179-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinez-Lopez M, Póvoa V & & Fior R 2021 Generation of zebrafish larval xenografts and tumor behavior analysis. Journal of Visualized Experiments 172 e62373. (https://doi.org/10.3791/62373)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mizutani Y, Inase A, Maimaitili Y, Miyata Y, Kitao A, Matsumoto H, Kawaguchi K, Higashime A, Goto H, Kurata K, et al.2019 An mTORC1/2 dual inhibitor, AZD2014, acts as a lysosomal function activator and enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells. International Journal of Hematology 110 490499. (https://doi.org/10.1007/s12185-019-02701-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pan Z, Xu T, Bao L, Hu X, Jin T, Chen J, Chen J, Qian Y, Lu X, Li L, et al.2022 CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Molecular Cancer 21 190. (https://doi.org/10.1186/s12943-022-01658-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park JT & & Leach SD 2018 Zebrafish model of KRAS-initiated pancreatic cancer. Animal Cells and Systems (Seoul) 22 353359. (https://doi.org/10.1080/19768354.2018.1530301)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Póvoa V, Rebelo de Almeida C, Maia-Gil M, Sobral D, Domingues M, Martinez-Lopez M, de Almeida Fuzeta M, Silva C, Grosso AR & & Fior R 2021 Innate immune evasion revealed in a colorectal zebrafish xenograft model. Nature Communications 12 1156. (https://doi.org/10.1038/s41467-021-21421-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prasongsook N, Kumar A, Chintakuntlawar AV, Foote RL, Kasperbauer J, Molina J, Garces Y, Ma D, Wittich MAN, Rubin J, et al.2017 Survival in response to multimodal therapy in anaplastic thyroid cancer. Journal of Clinical Endocrinology and Metabolism 102 45064514. (https://doi.org/10.1210/jc.2017-01180)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rebelo de Almeida C, Mendes RV, Pezzarossa A, Gago J, Carvalho C, Alves A, Nunes V, Brito MJ, Cardoso MJ, Ribeiro J, et al.2020 Zebrafish xenografts as a fast screening platform for bevacizumab cancer therapy. Communications Biology 3 299. (https://doi.org/10.1038/s42003-020-1015-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rougeot J, Torraca V, Zakrzewska A, Kanwal Z, Jansen HJ, Sommer F, Spaink HP & & Meijer AH 2019 RNAseq profiling of leukocyte populations in zebrafish larvae reveals a cxcl11 chemokine gene as a marker of macrophage polarization during mycobacterial infection. Frontiers in Immunology 10 832. (https://doi.org/10.3389/fimmu.2019.00832)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P & & Salgia R 2023 Recent advancement in breast cancer research: insights from model organisms-mouse models to zebrafish. Cancers (Basel) 15. (https://doi.org/10.3390/cancers15112961)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J, et al.2019 Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566 553557. (https://doi.org/10.1038/s41586-019-0915-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tucker ER, George S, Angelini P, Bruna A & & Chesler L 2021 The promise of patient-derived preclinical models to accelerate the implementation of personalised medicine for children with neuroblastoma. Journal of Personalized Medicine 11. (https://doi.org/10.3390/jpm11040248)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veinotte CJ, Dellaire G & & Berman JN 2014 Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Disease Models and Mechanisms 7 745754. (https://doi.org/10.1242/dmm.015784)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weiss JM, Lumaquin-Yin D, Montal E, Suresh S, Leonhardt CS & & White RM 2022 Shifting the focus of zebrafish toward a model of the tumor microenvironment. eLife 11 e69703. (https://doi.org/10.7554/eLife.69703)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wong K, Di Cristofano F, Ranieri M, De Martino D & & Di Cristofano A 2019 PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocrine-Related Cancer 26 425436. (https://doi.org/10.1530/ERC-19-0011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu B, Fuchs T, Dogan S, Landa I, Katabi N, Fagin JA, Tuttle RM, Sherman E, Gill AJ & & Ghossein R 2020 Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid 30 15051517. (https://doi.org/10.1089/thy.2020.0086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu B, Zhang L, Setoodeh R, Mohanty AS, Landa I, Balzer B, Tiedje V, Ganly I, Dogan S, Fagin JA, et al.2022 Prolonged survival of anaplastic thyroid carcinoma is associated with resectability, low tumor-infiltrating neutrophils/myeloid-derived suppressor cells, and low peripheral neutrophil-to-lymphocyte ratio. Endocrine 76 612619. (https://doi.org/10.1007/s12020-022-03008-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang L, Rojas AM & & Shiau CE 2021 Liposomal clodronate-mediated macrophage depletion in the zebrafish model. Bio-Protocol 11 e3951. (https://doi.org/10.21769/BioProtoc.3951)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu CC, Huang HB, Hung SK, Liao HF, Lee CC, Lin HY, Li SC, Ho HC, Hung CL & & Su YC 2016 AZD2014 radiosensitizes oral squamous cell carcinoma by inhibiting AKT/mTOR axis and inducing G1/G2/M cell cycle arrest. PLoS One 11 e0151942. (https://doi.org/10.1371/journal.pone.0151942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, Dong E, Deng H, Lin S, Wei Y, et al.2016 Endothelial cords promote tumor initial growth prior to vascular function through a paracrine mechanism. Scientific Reports 6 19404. (https://doi.org/10.1038/srep19404)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zuazo-Gaztelu I & & Casanovas O 2018 Unraveling the role of angiogenesis in cancer ecosystems. Frontiers in Oncology 8 248. (https://doi.org/10.3389/fonc.2018.00248)