The role of the tumor microenvironment in papillary thyroid microcarcinoma nodal metastasis

in Endocrine-Related Cancer
Authors:
Mijin Kim Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
Biomedical Research Institute, Pusan National University Hospital, Busan, Korea

Search for other papers by Mijin Kim in
Current site
Google Scholar
PubMed
Close
,
Chae Hwa Kwon Biomedical Research Institute, Pusan National University Hospital, Busan, Korea

Search for other papers by Chae Hwa Kwon in
Current site
Google Scholar
PubMed
Close
, and
Bo Hyun Kim Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
Biomedical Research Institute, Pusan National University Hospital, Busan, Korea

Search for other papers by Bo Hyun Kim in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to B H Kim or C H Kwon: pons71@pusan.ac.kr or chkwon@pusan.ac.kr
Restricted access
Rent on DeepDyve

Sign up for journal news

The genetic alterations currently identified in papillary thyroid microcarcinomas (PTMCs) are insufficient for distinguishing tumors with aggressive features. We aimed to identify candidate markers associated with lateral lymph node metastasis (LLNM, N1sb disease) in patients with PTMC using transcriptomic analysis. RNA sequencing was performed on 26 matched tumor and normal thyroid tissue samples (N0, n = 14; N1b, n = 12), followed by functional enrichment analyses of differentially expressed genes (DEGs). EcoTyper was used to explore the distinct tumor microenvironment (TME). We identified 631 DEGs (213 upregulated and 418 downregulated) between N1b and N0 PTMCs. The most significantly upregulated genes in N1b were associated with tumorigenesis, adhesion, migration, and invasion. DEGs were mainly enriched in the pathways of idiopathic pulmonary fibrosis, TME, wound healing, and inhibition of matrix metalloproteases. We predicted the activation of these pathways in N1b PTMCs. N1b PTMCs had a unique TME with abundant fibroblasts and epithelial cells, associated with an increased risk of disease progression. Fibroblast marker genes, including POSTN, MMP11, TNFAIP6,and FN1, and epithelial cell marker genes, including NOX4, MFAP2, TGFVBI,and TNC, were selected. POSTN and FN1, fibroblast cell-specific genes, and NOX4 and TNC, epithelial cell-specific genes, were promising biomarkers for predicting LLNM development and recurrence in patients with PTMC. We delineated the cellular ecotypes within the TME of patients with N1b PTMC and revealed potential markers for predicting LLNM and the prognosis of PTMC. These findings provide valuable insights into the contributions of cancer-associated fibroblasts and epithelial cells to PTMC progression and metastasis.

Supplementary Materials

 

  • Collapse
  • Expand
  • Azouzi N, Cailloux J, Cazarin JM, Knauf JA, Cracchiolo J, Al Ghuzlan A, Hartl D, Polak M, Carré A, El Mzibri M, et al.2016 NADPH oxidase NOX4 is a critical mediator of BRAFV600E-induced downregulation of the sodium/iodide symporter in papillary thyroid carcinomas. Antioxidants and Redox Signaling 26 864877. (https://doi.org/10.1089/ars.2015.6616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brechbuhl HM, Barrett AS, Kopin E, Hagen JC, Han AL, Gillen AE, Finlay-Schultz J, Cittelly DM, Owens P, Horwitz KB, et al.2020 Fibroblast subtypes define a metastatic matrisome in breast cancer. JCI Insight 5 e130751. (https://doi.org/10.1172/jci.insight.130751)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cancer Genome Atlas Research Network 2014 Integrated genomic characterization of papillary thyroid carcinoma. Cell 159 676690. (https://doi.org/10.1016/j.cell.2014.09.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen X & & Song E 2019 Turning foes to friends: targeting cancer-associated fibroblasts. Nature Reviews. Drug Discovery 18 99115. (https://doi.org/10.1038/s41573-018-0004-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chiquet-Ehrismann R & & Chiquet M 2003 Tenascins: regulation and putative functions during pathological stress. Journal of Pathology 200 488499. (https://doi.org/10.1002/path.1415)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cho J-G, Byeon HK, Oh KH, Baek S-K, Kwon S-Y, Jung K-Y & & Woo J-S 2018 Clinicopathological significance of cancer-associated fibroblasts in papillary thyroid carcinoma: a predictive marker of cervical lymph node metastasis. European Archives of Oto-Rhino-Laryngology 275 23552361. (https://doi.org/10.1007/s00405-018-5061-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & & Gingeras TR 2013 STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 1521. (https://doi.org/10.1093/bioinformatics/bts635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Erez N, Truitt M, Olson P, Arron ST & & Hanahan D 2010 Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17 135147. (https://doi.org/10.1016/j.ccr.2009.12.041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fenniche S, Oukabli M, Oubaddou Y, Chahdi H, Damiri A, Alghuzlan A, Laraqui A, Dakka N, Bakri Y, Dupuy C, et al.2023 A comparative analysis of NOX4 protein expression in malignant and non-malignant thyroid tumors. Current Issues in Molecular Biology 45 58115823. (https://doi.org/10.3390/cimb45070367)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Geng QS, Huang T, Li LF, Shen ZB, Xue WH & & Zhao J 2021 Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Frontiers in Medicine 8 812278. (https://doi.org/10.3389/fmed.2021.812278)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • González-González L & & Alonso J 2018 Periostin: a matricellular protein with multiple functions in cancer development and progression. Frontiers in Oncology 8 225. (https://doi.org/10.3389/fonc.2018.00225)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, et al.2016 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26 1133. (https://doi.org/10.1089/thy.2015.0020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jang I & & Beningo KA 2019 Integrins, CAFs and mechanical forces in the progression of cancer. Cancers (Basel) 11. (https://doi.org/10.3390/cancers11050721)

  • Jeon MJ, Chun SM, Lee JY, Choi KW, Kim D, Kim TY, Jang SJ, Kim WB, Shong YK, Song DE, et al.2019 Mutational profile of papillary thyroid microcarcinoma with extensive lymph node metastasis. Endocrine 64 130138. (https://doi.org/10.1007/s12020-019-01842-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalluri R 2016 The biology and function of fibroblasts in cancer. Nature Reviews. Cancer 16 582598. (https://doi.org/10.1038/nrc.2016.73)

  • Kim YS 2012 Patterns and predictive factors of lateral lymph node metastasis in papillary thyroid microcarcinoma. Otolaryngology–Head and Neck Surgery 147 1519. (https://doi.org/10.1177/0194599812439277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim M, Kwon CH, Jang MH, Kim JM, Kim EH, Jeon YK, Kim SS, Choi KU, Kim IJ, Park M, et al.2021 Whole-exome sequencing in papillary microcarcinoma: potential early biomarkers of lateral lymph node metastasis. Endocrinology and Metabolism 36 10861094. (https://doi.org/10.3803/EnM.2021.1132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kusafuka K, Yamashita M, Iwasaki T, Tsuchiya C, Kubota A, Hirata K, Murakami A, Muramatsu A, Arai K & & Suzuki M 2021 Periostin expression and its supposed roles in benign and malignant thyroid nodules: an immunohistochemical study of 105 cases. Diagnostic Pathology 16 86. (https://doi.org/10.1186/s13000-021-01146-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kwak JY, Kim EK, Kim MJ, Son EJ, Chung WY, Park CS & & Nam KH 2009 Papillary microcarcinoma of the thyroid: predicting factors of lateral neck node metastasis. Annals of Surgical Oncology 16 13481355. (https://doi.org/10.1245/s10434-009-0384-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leboulleux S, Tuttle RM, Pacini F & & Schlumberger M 2016 Papillary thyroid microcarcinoma: time to shift from surgery to active surveillance? Lancet. Diabetes and Endocrinology 4 933942. (https://doi.org/10.1016/S2213-8587(1630180-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li B & & Dewey CN 2011 RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12 323. (https://doi.org/10.1186/1471-2105-12-323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li D, Gao M, Li X & & Xing M 2016 Molecular aberrance in papillary thyroid microcarcinoma bearing high aggressiveness: identifying a "Tibetan Mastiff dog" from puppies. Journal of Cellular Biochemistry 117 14911496. (https://doi.org/10.1002/jcb.25506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Love MI, Huber W & & Anders S 2014 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15 550. (https://doi.org/10.1186/s13059-014-0550-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luca BA, Steen CB, Matusiak M, Azizi A, Varma S, Zhu C, Przybyl J, Espín-Pérez A, Diehn M, Alizadeh AA, et al.2021 Atlas of clinically distinct cell states and ecosystems across human solid tumors. Cell 184 54825496.e28. (https://doi.org/10.1016/j.cell.2021.09.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin M 2011 Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17 1012. (https://doi.org/10.14806/ej.17.1.200)

  • Mercante G, Frasoldati A, Pedroni C, Formisano D, Renna L, Piana S, Gardini G, Valcavi R & & Barbieri V 2009 Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. Thyroid 19 707716. (https://doi.org/10.1089/thy.2008.0270)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyauchi A, Ito Y & & Oda H 2018 Insights into the management of papillary microcarcinoma of the thyroid. Thyroid 28 2331. (https://doi.org/10.1089/thy.2017.0227)

  • Nixon IJ, Wang LY, Palmer FL, Tuttle RM, Shaha AR, Shah JP, Patel SG & & Ganly I 2014 The impact of nodal status on outcome in older patients with papillary thyroid cancer. Surgery 156 137146. (https://doi.org/10.1016/j.surg.2014.03.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perera D, Ghossein R, Camacho N, Senbabaoglu Y, Seshan V, Li J, Bouvier N, Boucai L, Viale A, Socci ND, et al.2019 Genomic and transcriptomic characterization of papillary microcarcinomas with lateral neck lymph node metastases. Journal of Clinical Endocrinology and Metabolism 104 48894899. (https://doi.org/10.1210/jc.2019-00431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pisanu A, Saba A, Podda M, Reccia I & & Uccheddu A 2015 Nodal metastasis and recurrence in papillary thyroid microcarcinoma. Endocrine 48 575581. (https://doi.org/10.1007/s12020-014-0350-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puppin C, Fabbro D, Dima M, Di Loreto C, Puxeddu E, Filetti S, Russo D & & Damante G 2008 High periostin expression correlates with aggressiveness in papillary thyroid carcinomas. Journal of Endocrinology 197 401408. (https://doi.org/10.1677/JOE-07-0618)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Quail DF & & Joyce JA 2013 Microenvironmental regulation of tumor progression and metastasis. Nature Medicine 19 14231437. (https://doi.org/10.1038/nm.3394)

  • Rick JW, Chandra A, Dalle Ore C, Nguyen AT, Yagnik G & & Aghi MK 2019 Fibronectin in malignancy: cancer-specific alterations, protumoral effects, and therapeutic implications. Seminars in Oncology 46 284290. (https://doi.org/10.1053/j.seminoncol.2019.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinson MD, McCarthy DJ & & Smyth GK 2010 edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 139140. (https://doi.org/10.1093/bioinformatics/btp616)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saitoh O, Mitsutake N, Nakayama T & & Nagayama Y 2009 Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells. Thyroid 19 735742. (https://doi.org/10.1089/thy.2009.0017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Féral CC, Cook M, et al.2011 ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20 229245. (https://doi.org/10.1016/j.ccr.2011.06.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sewell-Loftin MK, Bayer SVH, Crist E, Hughes T, Joison SM, Longmore GD & & George SC 2017 Cancer-associated fibroblasts support vascular growth through mechanical force. Scientific Reports 7 12574. (https://doi.org/10.1038/s41598-017-13006-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Siegel RL, Miller KD & & Jemal A 2018 Cancer statistics, 2018. CA 68 730. (https://doi.org/10.3322/caac.21442)

  • Sun J, Nishiyama T, Shimizu K & & Kadota K 2013 TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14 219. (https://doi.org/10.1186/1471-2105-14-219)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun WY, Jung WH & & Koo JS 2016 Expression of cancer-associated fibroblast-related proteins in thyroid papillary carcinoma. Tumour Biology 37 81978207. (https://doi.org/10.1007/s13277-015-4684-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tseleni-Balafouta S, Gakiopoulou H, Fanourakis G, Voutsinas G, Balafoutas D & & Patsouris E 2006 Tenascin-c protein expression and mRNA splice variants in thyroid carcinoma. Experimental and Molecular Pathology 80 177182. (https://doi.org/10.1016/j.yexmp.2005.09.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wada N, Duh QY, Sugino K, Iwasaki H, Kameyama K, Mimura T, Ito K, Takami H & & Takanashi Y 2003 Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Annals of Surgery 237 399407. (https://doi.org/10.1097/01.SLA.0000055273.58908.19)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Song W, Li Y, Liu Z, Zhao K, Jia L, Wang X, Jiang R, Tian Y & & He X 2023 Integrated analysis of tumor microenvironment features to establish a diagnostic model for papillary thyroid cancer using bulk and single-cell RNA sequencing technology. Journal of Cancer Research and Clinical Oncology 149 1683716850. (https://doi.org/10.1007/s00432-023-05420-8)

    • PubMed
    • Search Google Scholar
    • Export Citation