Cellular mechanisms of RET receptor dysfunction in multiple endocrine neoplasia 2

in Endocrine-Related Cancer
Authors:
Timothy J Walker Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada

Search for other papers by Timothy J Walker in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6146-3485
and
Lois M Mulligan Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada

Search for other papers by Lois M Mulligan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9308-8245

Correspondence should be addressed to L M Mulligan: mulligal@queensu.ca

This paper forms part of the themed collection RET@Thirty: Three Decades of Remarkable Progress. The guest editors for this collection were Tom Kurzawinski, Neil McDonald and Kate Newbold.

Restricted access
Rent on DeepDyve

Sign up for journal news

Graphical abstract

Abstract

Rearranged during transfection (RET) is a developmentally important receptor tyrosine kinase that has been identified as an oncogenic driver in a number of cancers. Activating RET point mutations gives rise to the inherited cancer syndrome multiple endocrine neoplasia type 2 (MEN2), characterized by medullary thyroid carcinoma. There are two MEN2 subtypes, MEN2A and MEN2B, that differ in tumour aggressiveness and the associated constellation of other disease features, which are caused by distinct patterns of RET amino acid substitution mutations. MEN2A-RET mutations affecting extracellular cysteine residues promote ligand-independent dimerization and constitutive RET activity, while MEN2B is caused by a single amino acid change in the tyrosine kinase domain of RET, releasing autoinhibition and producing a more active MEN2B-RET kinase that can promote signalling as monomers or dimers in the absence of a ligand. These mutations cause intrinsic biochemical changes in the RET structure and activation but also trigger extrinsic effects that alter RET cellular location, interactions and mechanisms of downregulation that can prolong or mislocate RET activity, changing or enhancing functional outcomes. Furthermore, changes in specific combinations of RET-mediated effects associated with different mutations give rise to the distinct MEN2 disease phenotypes. Here, we discuss the current understanding of the intrinsic and extrinsic characteristics of RET MEN2A cysteine and MEN2B mutants and how these contribute to transforming cellular processes and to the differences in tumour progression and disease aggressiveness.

 

  • Collapse
  • Expand
  • Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. 2007 Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45 114. (https://doi.org/10.1136/jmg.2007.053959)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arighi E, Popsueva A, Degl'Innocenti D, et al. 2004 Biological effects of the dual phenotypic Janus mutation of ret cosegregating with both multiple endocrine neoplasia type 2 and Hirschsprung's disease. Mol Endocrinol 18 10041017. (https://doi.org/10.1210/me.2003-0173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Asai N, Iwashita T, Matsuyama M, et al. 1995 Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 15 16131619. (https://doi.org/10.1128/mcb.15.3.1613)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castellone MD & Melillo RM 2018 RET-mediated modulation of tumor microenvironment and immune response in multiple endocrine neoplasia type 2 (MEN2). Endocr Relat Cancer 25 T105T119. (https://doi.org/10.1530/erc-17-0303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castinetti F & Eng C 2024 Genotype/phenotype correlations in multiple endocrine neoplasia type 2. Endocr Relat Cancer 31 e240139. (https://doi.org/10.1530/erc-24-0139)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castinetti F, Moley J, Mulligan LM, et al. 2018 A comprehensive review on MEN2B. Endocr Relat Cancer 25 T29T39. (https://doi.org/10.1530/erc-17-0209)

  • Chappuis-Flament S, Pasini A, De Vita G, et al. 1998 Dual effect on the RET receptor of MEN 2 mutations affecting specific extracytoplasmic cysteines. Oncogene 17 28512861. (https://doi.org/10.1038/sj.onc.1202202)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crupi MJF, Maritan SM, Reyes-Alvarez E, et al. 2020 GGA3-mediated recycling of the RET receptor tyrosine kinase contributes to cell migration and invasion. Oncogene 39 13611377. (https://doi.org/10.1038/s41388-019-1068-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donis-Keller H, Dou S, Chi D, et al. 1993 Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2 851856. (https://doi.org/10.1093/hmg/2.7.851)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Engelmann D, Koczan D, Ricken P, et al. 2009 Transcriptome analysis in mouse tumors induced by Ret-MEN2/FMTC mutations reveals subtype-specific role in survival and interference with immune surveillance. Endocr Relat Cancer 16 211224. (https://doi.org/10.1677/erc-08-0158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freche B, Guillaumot P, Charmetant J, et al. 2005 Inducible dimerization of RET reveals a specific AKT deregulation in oncogenic signaling. J Biol Chem 280 3658436591. (https://doi.org/10.1074/jbc.m505707200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gujral TS, Singh VK, Jia Z, et al. 2006 Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res 66 1074110749. (https://doi.org/10.1158/0008-5472.can-06-3329)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo Q, Cheng ZM, Gonzalez-Cantu H, et al. 2023 TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation. Cell Rep 42 113070. (https://doi.org/10.1016/j.celrep.2023.113070)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hofstra RMW, Landsvater RM, Ceccherini I, et al. 1994 A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367 375376. (https://doi.org/10.1038/367375a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hyndman BD, Crupi MJF, Peng S, et al. 2017 Differential recruitment of E3 ubiquitin ligase complexes regulates RET isoform internalization. J Cell Sci 130 32823296. (https://doi.org/10.1242/jcs.203885)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Incoronato M, D'Alessio A, Paladino S, et al. 2004 The Shp-1 and Shp-2, tyrosine phosphatases, are recruited on cell membrane in two distinct molecular complexes including Ret oncogenes. Cell Signal 16 847856. (https://doi.org/10.1016/j.cellsig.2004.01.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwashita T, Kato M, Murakami H, et al. 1999 Biological and biochemical properties of Ret with kinase domain mutations identified in multiple endocrine neoplasia type 2B and familial medullary thyroid carcinoma. Oncogene 18 39193922. (https://doi.org/10.1038/sj.onc.1202742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kales SC, Nau MM, Merchant AS, et al. 2014 Enigma prevents Cbl-c-mediated ubiquitination and degradation of RETMEN2A. PLoS One 9 e87116. (https://doi.org/10.1371/journal.pone.0087116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, De Castro Ribeiro O, Haapanen O, et al. 2022 Unexpected structures formed by the kinase RET C634R mutant extracellular domain suggest potential oncogenic mechanisms in MEN2A. J Biol Chem 298 102380. (https://doi.org/10.1016/j.jbc.2022.102380)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Machens A & Dralle H 2024 Accelerated MEN2A in homozygous RET carriers in the context of consanguinity. Eur J Endocrinol 190 K43K46. (https://doi.org/10.1093/ejendo/lvae025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Machens A, Lorenz K, Weber F, et al. 2024 Genotype-specific development of MEN 2 constituent components in 683 RET carriers. Endocr Relat Cancer 31 e240038. (https://doi.org/10.1530/erc-24-0038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maciel RMB, Camacho CP, Assumpcao LVM, et al. 2019 Genotype and phenotype landscape of MEN2 in 554 medullary thyroid cancer patients: the BrasMEN study. Endocr Connect 8 289298. (https://doi.org/10.1530/ec-18-0506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marini F, Giusti F & Brandi ML 2024 Molecular genetics of parathyroid tumors. Curr Opin Endocr Metab Res 34 100510. (https://doi.org/10.1016/j.coemr.2024.100510)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mathiesen JS, Effraimidis G, Rossing M, et al. 2022 Multiple endocrine neoplasia type 2: a review. Semin Cancer Biol 79 163179. (https://doi.org/10.1016/j.semcancer.2021.03.035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mule C, Ciampi R, Ramone T, et al. 2021 Higher RET gene expression levels do not represent an alternative RET activation mechanism in medullary thyroid carcinoma. Biomolecules 11 1542. (https://doi.org/10.3390/biom11101542)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulligan LM 2014 RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 14 173186. (https://doi.org/10.1038/nrc3680)

  • Mulligan LM, Kwok JBJ, Healey CS, et al. 1993 Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363 458460. (https://doi.org/10.1038/363458a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oczko-Wojciechowska M, Swierniak M, Krajewska J, et al. 2017 Differences in the transcriptome of medullary thyroid cancer regarding the status and type of RET gene mutations. Sci Rep 7 42074. (https://doi.org/10.1038/srep42074)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paratcha G, Ledda F, Baars L, et al. 2001 Released GFRα1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29 171184. (https://doi.org/10.1016/s0896-6273(01)00188-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perrinjaquet M, Vilar M & Ibanez CF 2010 Protein-tyrosine phosphatase SHP2 contributes to GDNF neurotrophic activity through direct binding to phospho-Tyr687 in the RET receptor tyrosine kinase. J Biol Chem 285 3186731875. (https://doi.org/10.1074/jbc.m110.144923)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pierchala BA, Milbrandt J & Johnson Jr EM 2006 Glial cell line-derived neurotrophic factor-dependent recruitment of Ret into lipid rafts enhances signaling by partitioning Ret from proteasome-dependent degradation. J Neurosci 26 27772787. (https://doi.org/10.1523/jneurosci.3420-05.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plaza-Menacho I, Barnouin K, Goodman K, et al. 2014 Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol Cell 53 738751. (https://doi.org/10.1016/j.molcel.2014.01.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rossel M, Pasini A, Chappuis S, et al. 1997 Distinct biological properties of two RET isoforms activated by MEN 2A and MEN 2B mutations. Oncogene 14 265275. (https://doi.org/10.1038/sj.onc.1200831)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Runeberg-Roos P & Penn RD 2020 Improving therapeutic potential of GDNF family ligands. Cell Tissue Res 382 173183. (https://doi.org/10.1007/s00441-020-03256-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Runeberg-Roos P, Virtanen H & Saarma M 2007 RET(MEN 2B) is active in the endoplasmic reticulum before reaching the cell surface. Oncogene 26 79097915. (https://doi.org/10.1038/sj.onc.1210591)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santoro M, Carlomagno F, Romano A, et al. 1995 Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267 381383. (https://doi.org/10.1126/science.7824936)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schirwani S, Fraser S, Mushtaq T, et al. 2021 Homozygosity for the pathogenic RET hotspot variant p.Cys634Trp: a consanguineous family with MEN2A. Eur J Med Genet 64 104141. (https://doi.org/10.1016/j.ejmg.2021.104141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scott RP, Eketjall S, Aineskog H, et al. 2005 Distinct turnover of alternatively-spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem 280 1344213449. (https://doi.org/10.1074/jbc.m500507200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Segouffin-Cariou C & Billaud M 2000 Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. J Biol Chem 275 35683576. (https://doi.org/10.1074/jbc.275.5.3568)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Songyang Z, Carraway KL, Eck MJ, et al. 1995 Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373 536539. (https://doi.org/10.1038/373536a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi M, Iwashita T, Santoro M, et al. 1999 Co-segregation of MEN2 and Hirschsprung's disease: the same mutation of RET with both gain and loss-of-function? Hum Mutat 13 331336. (https://doi.org/10.1002/(SICI)1098-1004(1999)13:4<331::AID-HUMU11>3.0.CO;2-%23)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Voss RK, Feng L, Lee JE, et al. 2017 Medullary thyroid carcinoma in MEN2A: ATA moderate- or high-risk RET mutations do not predict disease aggressiveness. J Clin Endocrinol Metab 102 28072813. (https://doi.org/10.1210/jc.2017-00317)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vuong HG, Odate T, Ngo HTT, et al. 2018 Clinical significance of RET and RAS mutations in sporadic medullary thyroid carcinoma: a meta-analysis. Endocr Relat Cancer 25 633641. (https://doi.org/10.1530/erc-18-0056)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walker TJ, Reyes-Alvarez E, Hyndman BD, et al. 2024 Loss of tumor suppressor TMEM127 drives RET-mediated transformation through disrupted membrane dynamics. eLife 12 RP89100. (https://doi.org/10.7554/elife.89100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watanabe T, Ichihara M, Hashimoto M, et al. 2002 Characterization of gene expression induced by RET with MEN2A or MEN2B mutation. Am J Pathol 161 249256. (https://doi.org/10.1016/s0002-9440(10)64176-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yadav L, Pietila E, Ohman T, et al. 2020 PTPRA phosphatase regulates GDNF-dependent RET signaling and inhibits the RET mutant MEN2A oncogenic potential. iScience 23 100871. (https://doi.org/10.1016/j.isci.2020.100871)

    • PubMed
    • Search Google Scholar
    • Export Citation