The complex landscape of luminal breast cancer

in Endocrine-Related Cancer
Authors:
Catrin Lutz Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
Oncode Institute, Utrecht, The Netherlands

Search for other papers by Catrin Lutz in
Current site
Google Scholar
PubMed
Close
,
Hendrik A Messal Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
Oncode Institute, Utrecht, The Netherlands

Search for other papers by Hendrik A Messal in
Current site
Google Scholar
PubMed
Close
,
Damir Vareslija School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland

Search for other papers by Damir Vareslija in
Current site
Google Scholar
PubMed
Close
, and
Stefan Prekovic Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands

Search for other papers by Stefan Prekovic in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7051-9321

Correspondence should be addressed to D Vareslija: damirvareslija@rcsi.ie or to S Prekovic: s.prekovic@umcutrecht.nl

(D Vareslija and S Prekovic contributed equally as senior authors)

Restricted access
Rent on DeepDyve

Sign up for journal news

The breast epithelium, vital for mammary gland function, is influenced by oestrogen through the oestrogen receptor (ER) signalling pathway. Luminal breast cancer (BC), characterised by ER expression, comprises the majority of all BCs and presents significant clinical challenges due to therapy resistance and recurrence. Despite advancements in understanding luminal disease, improving long-term survival and reducing relapse of BC patients by predicting therapy efficacy and understanding resistance mechanisms remain critical challenges. This review discusses luminal BC biology, focusing on the molecular classification of primary disease, metastatic spread, and experimental models.

Supplementary Materials

 

  • Collapse
  • Expand
  • Ades F, Zardavas D, Bozovic-Spasojevic I, et al. 2014 Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol 32 27942803. (https://doi.org/10.1200/jco.2013.54.1870)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aguirre-Ghiso JA, Estrada Y, Liu D, et al. 2003 ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63 16841695.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aguirre-Ghiso JA, Ossowski L & Rosenbaum SK 2004 Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64 73367345. (https://doi.org/10.1158/0008-5472.can-04-0113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Albrengues J, Shields MA, Ng D, et al. 2018 Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361 eaao4227. (https://doi.org/10.1126/science.aao4227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alves CL, Ehmsen S, Terp MG, et al. 2021 Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 12 51125115. (https://doi.org/10.1038/s41467-021-25422-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andò S, Malivindi R, Catalano S, et al. 2017 Conditional expression of Ki-RasG12V in the mammary epithelium of transgenic mice induces estrogen receptor alpha (ERα)-positive adenocarcinoma. Oncogene 36 64206431. (https://doi.org/10.1038/onc.2017.252)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Angus L, Smid M, Wilting SM, et al. 2019 The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet 51 14501458. (https://doi.org/10.1038/s41588-019-0507-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bado I, Gugala Z, Fuqua SAW, et al. 2017 Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 36 45274537. (https://doi.org/10.1038/onc.2017.94)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bado IL, Zhang W, Hu J, et al. 2021 The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells. Developmental Cell 56 11001117.e9. (https://doi.org/10.1016/j.devcel.2021.03.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barkan D, El Touny LH, Michalowski AM, et al. 2010 Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70 57065716. (https://doi.org/10.1158/0008-5472.can-09-2356)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barretina J, Caponigro G, Stransky N, et al. 2012 The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483 603607. (https://doi.org/10.1038/nature11003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Behbod F, Kittrell FS, LaMarca H, et al. 2009 An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res 11 R66. (https://doi.org/10.1186/bcr2358)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Behbod F, Gomes AM & Machado HL 2018 Modeling human ductal carcinoma in situ in the mouse. J Mammary Gland Biol Neoplasia 23 269278. (https://doi.org/10.1007/s10911-018-9408-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernardo GM, Lozada KL, Miedler JD, et al. 2010 FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development 137 20452054. (https://doi.org/10.1242/dev.043299)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berry DA, Cirrincione C, Henderson IC, et al. 2006 Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295 16581667. (https://doi.org/10.1001/jama.295.14.1658)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bondesson M, Hao R, Lin C-Y, et al. 2015 Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta Gene Regul Mech 1849 142151. (https://doi.org/10.1016/j.bbagrm.2014.06.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Braun S, Vogl FD, Naume B, et al. 2005 A pooled analysis of bone marrow micrometastasis in breast cancer. New Engl J Med 353 793802. (https://doi.org/10.1056/nejmoa050434)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Braun L, Mietzsch F, Seibold P, et al. 2013 Intrinsic breast cancer subtypes defined by estrogen receptor signalling-prognostic relevance of progesterone receptor loss. Mod Pathol 26 11611171. (https://doi.org/10.1038/modpathol.2013.60)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Briand P & Lykkesfeldt AE 2001 An in vitro model of human breast carcinogenesis: epigenetic aspects. Breast Cancer Res Treat 65 179187. (https://doi.org/10.1023/a:1006434503061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brisken C & O’Malley B 2010 Hormone action in the mammary gland. Cold Spring Harbor Perspect Biol 2 a003178. (https://doi.org/10.1101/cshperspect.a003178)

  • Brodie A, Jelovac D, Macedo L, et al. 2005 Therapeutic observations in MCF-7 aromatase xenografts. Clin Cancer Res 11 884s888s. (https://doi.org/10.1158/1078-0432.884s.11.2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown-Grant K, Exley D & Naftolin F 1970 Peripheral plasma oestradiol and luteinizing hormone concentrations during the oestrous cycle of the rat. J Endocrinol 48 295296. (https://doi.org/10.1677/joe.0.0480295)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bu W & Li Y 2024 Advances in immunocompetent mouse and rat models. Cold Spring Harbor Perspect Med 14 a041328. (https://doi.org/10.1101/cshperspect.a041328)

  • Buxant F, Engohan-Aloghe C & Noël J-C 2010 Estrogen receptor, progesterone receptor, and glucocorticoid receptor expression in normal breast tissue, breast in situ carcinoma, and invasive breast cancer. Appl Immunohistochem Mol Morphol 18 254257. (https://doi.org/10.1097/pai.0b013e3181c10180)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cailleau R, Olivé M & Cruciger QV 1978 Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14 911915. (https://doi.org/10.1007/bf02616120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Campbell KM, O’Leary KA, Rugowski DE, et al. 2019 A spontaneous aggressive ERα+ mammary tumor model is driven by kras activation. Cell Rep 28 15261537.e4. (https://doi.org/10.1016/j.celrep.2019.06.098)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. 2013 The cancer genome atlas pan-cancer analysis project. Nat Genet 45 11131120. (https://doi.org/10.1038/ng.2764)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cardiff RD & Wellings SR 1999 The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 4 105122. (https://doi.org/10.1023/a:1018712905244)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cardoso F, van’t Veer LJ, Bogaerts J, et al. 2016 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. New Engl J Med 375 717729. (https://doi.org/10.1056/nejmoa1602253)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carlson P, Dasgupta A, Grzelak CA, et al. 2019 Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol 21 238250. (https://doi.org/10.1038/s41556-018-0267-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carroll JS, Liu XS, Brodsky AS, et al. 2005 Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122 3343. (https://doi.org/10.1016/j.cell.2005.05.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carson-Jurica MA, Schrader WT & O’Malley BW 1990 Steroid receptor family: structure and functions. Endocr Rev 11 201220. (https://doi.org/10.1210/edrv-11-2-201)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cejalvo JM, Martínez de Dueñas E, Galván P, et al. 2017 Intrinsic subtypes and gene expression profiles in primary and metastatic breast cancer. Cancer Res 77 22132221. (https://doi.org/10.1158/0008-5472.can-16-2717)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cejalvo JM, Pascual T, Fernández-Martínez A, et al. 2018 Clinical implications of the non-luminal intrinsic subtypes in hormone receptor-positive breast cancer. Cancer Treat Rev 67 6370. (https://doi.org/10.1016/j.ctrv.2018.04.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chan SR, Vermi W, Luo J, et al. 2012 STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas. Breast Cancer Res 14 R16R21. (https://doi.org/10.1186/bcr3100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chandarlapaty S, Chen D, He W, et al. 2016 Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2 13101315. (https://doi.org/10.1001/jamaoncol.2016.1279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chapman KM, Medrano GA, Jaichander P, et al. 2015 Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Rep 10 18281835. (https://doi.org/10.1016/j.celrep.2015.02.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Charmsaz S, Doherty B, Cocchiglia S, et al. 2020 ADAM22/LGI1 complex as a new actionable target for breast cancer brain metastasis. BMC Med 18 349. (https://doi.org/10.1186/s12916-020-01806-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chi D, Singhal H, Li L, et al. 2019 Estrogen receptor signaling is reprogrammed during breast tumorigenesis. Proc Natl Acad Sci U S A 116 1143711443. (https://doi.org/10.1073/pnas.1819155116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chuprin J, Buettner H, Seedhom MO, et al. 2023 Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 20 192206. (https://doi.org/10.1038/s41571-022-00721-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ciriello G, Gatza ML, Beck AH, et al. 2015 Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163 506519. (https://doi.org/10.1016/j.cell.2015.09.033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ciwinska M, Messal HA, Hristova HR, et al. 2024 Mechanisms that clear mutations drive field cancerization in mammary tissue. Nature 633 198206. (https://doi.org/10.1038/s41586-024-07882-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clarke R, Jones BC, Sevigny CM, et al. 2021 Experimental models of endocrine responsive breast cancer: strengths, limitations, and use. Cancer Drug Resist 4 762783. (https://doi.org/10.20517/cdr.2021.33)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cochrane DR, Bernales S, Jacobsen BM, et al. 2014 Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 16 R7. (https://doi.org/10.1186/bcr3599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collin LJ, Yan M, Jiang R, et al. 2019 Oncotype DX recurrence score implications for disparities in chemotherapy and breast cancer mortality in Georgia. NPJ Breast Cancer 5 32. (https://doi.org/10.1038/s41523-019-0129-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Colombo N, Van Gorp T, Matulonis UA, et al. 2023 Relacorilant + nab-paclitaxel in patients with recurrent, platinum-resistant ovarian cancer: a three-arm, randomized, controlled, open-label phase II study. J Clin Oncol 41 47794789. (https://doi.org/10.1200/jco.22.02624)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cornelissen LM, Henneman L, Drenth AP, et al. 2019 Exogenous ERα expression in the mammary epithelium decreases over time and does not contribute to p53-deficient mammary tumor formation in mice. J Mammary Gland Biol Neoplasia 24 305321. (https://doi.org/10.1007/s10911-019-09437-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cosgrove N, Varešlija D, Keelan S, et al. 2022 Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities. Nat Commun 13 514. (https://doi.org/10.1038/s41467-022-27987-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coss CC, Jones A & Dalton JT 2014 Selective androgen receptor modulators as improved androgen therapy for advanced breast cancer. Steroids 90 94100. (https://doi.org/10.1016/j.steroids.2014.06.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cottu P, Marangoni E, Assayag F, et al. 2011 Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat 133 595606. (https://doi.org/10.1007/s10549-011-1815-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Curtis C, Shah SP, Chin S-F, et al. 2012 The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486 346352. (https://doi.org/10.1038/nature10983)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Ippolito AM, McDowell IC, Barrera A, et al. 2018 Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst 7 146160.e7. (https://doi.org/10.1016/j.cels.2018.06.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dabydeen SA & Furth PA 2014 Genetically engineered ERα-positive breast cancer mouse models. Endocr Relat Cancer 21 R195R208. (https://doi.org/10.1530/erc-13-0512)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dai X, Cheng H, Bai Z, et al. 2017 Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 8 31313141. (https://doi.org/10.7150/jca.18457)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis BA, Aminawung JA, Abu-Khalaf MM, et al. 2017 Racial and ethnic disparities in oncotype DX test receipt in a statewide population-based study. J Natl Compr Cancer Netw 15 346354. (https://doi.org/10.6004/jnccn.2017.0034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dekkers JF, van Vliet EJ, Sachs N, et al. 2021 Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat Protoc 16 19361965. (https://doi.org/10.1038/s41596-020-00474-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deng N, Minoche A, Harvey K, et al. 2022 Deep whole genome sequencing identifies recurrent genomic alterations in commonly used breast cancer cell lines and patient-derived xenograft models. Breast Cancer Res 24 63. (https://doi.org/10.1186/s13058-022-01540-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • DeRose YS, Wang G, Lin Y-C, et al. 2011 Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17 15141520. (https://doi.org/10.1038/nm.2454)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dieci MV, Orvieto E, Dominici M, et al. 2014 Rare breast cancer subtypes: histological, molecular, and clinical peculiarities. Oncologist 19 805813. (https://doi.org/10.1634/theoncologist.2014-0108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dimitrakakis C, Zhou J & Bondy CA 2002 Androgens and mammary growth and neoplasia. Fertil Sterility 77 (Supplement 4) S26S33. (https://doi.org/10.1016/s0015-0282(02)02979-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du T, Sikora MJ, Levine KM, et al. 2018 Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res 20 106. (https://doi.org/10.1186/s13058-018-1041-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dvořánková B, Szabo P, Lacina L, et al. 2012 Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem Cell Biol 137 679685. (https://doi.org/10.1007/s00418-012-0918-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elias AD, Spoelstra NS, Staley AW, et al. 2023 Phase II trial of fulvestrant plus enzalutamide in ER+/HER2− advanced breast cancer. NPJ Breast Cancer 9 41. (https://doi.org/10.1038/s41523-023-00544-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ethier SP 1995 Growth factor synthesis and human breast cancer progression. JNCI J Natl Cancer Inst 87 964973. (https://doi.org/10.1093/jnci/87.13.964)

  • Eyre R, Alférez DG, Santiago-Gómez A, et al. 2019 Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun 10 5016. (https://doi.org/10.1038/s41467-019-12807-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farage MA, Neill S & MacLean AB 2009 Physiological changes associated with the menstrual cycle: a review. Obstet Gynecol Surv 64 5872. (https://doi.org/10.1097/ogx.0b013e3181932a37)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fehm T, Krawczyk N, Solomayer E-F, et al. 2008 ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res 10 R76. (https://doi.org/10.1186/bcr2143)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Figueroa JD, Pfeiffer RM, Patel DA, et al. 2014 Terminal duct lobular unit involution of the normal breast: implications for breast cancer etiology. J Natl Cancer Inst 106 dju286. (https://doi.org/10.1093/jnci/dju286)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Filipits M, Dubsky P, Rudas M, et al. 2019 Prediction of distant recurrence using EndoPredict among women with ER+, HER2− node-positive and node-negative breast cancer treated with endocrine therapy only. Clin Cancer Res 25 38653872. (https://doi.org/10.1158/1078-0432.ccr-19-0376)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foidart JM, Colin C, Denoo X, et al. 1998 Estradiol and progesterone regulate the proliferation of human breast epithelial cells. Fertil Steril 69 963969. (https://doi.org/10.1016/s0015-0282(98)00042-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forozan F, Mahlamäki EH, Monni O, et al. 2000 Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res 60 45194525.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao H, Korn JM, Ferretti S, et al. 2015 High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 21 13181325. (https://doi.org/10.1038/nm.3954)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garcia-Recio S, Thennavan A, East MP, et al. 2020 FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Invest 130 48714887. (https://doi.org/10.1172/jci130323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garcia-Recio S, Hinoue T, Wheeler GL, et al. 2023 Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat Cancer 4 128147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garnett MJ, Edelman EJ, Heidorn SJ, et al. 2012 Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483 570575. (https://doi.org/10.1038/nature11005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gawrzak S, Rinaldi L, Gregorio S, et al. 2018 MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat Cell Biol 20 211221. (https://doi.org/10.1038/s41556-017-0021-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gazdar AF, Kurvari V, Virmani A, et al. 1998 Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer 78 766774. (https://doi.org/10.1002/(sici)1097-0215(19981209)78:6<766::aid-ijc15>3.0.co;2-l)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giordano C, Catalano S, Panza S, et al. 2011 Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene 30 41294140. (https://doi.org/10.1038/onc.2011.124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gkountela S, Castro-Giner F, Szczerba BM, et al. 2019 Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176 98112.e14. (https://doi.org/10.1016/j.cell.2018.11.046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goldhirsch A, Winer EP, Coates AS, et al. 2013 Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2013. Ann Oncol 24 22062223. (https://doi.org/10.1093/annonc/mdt303)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Green JE, Shibata M-A, Yoshidome K, et al. 2000 The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19 10201027. (https://doi.org/10.1038/sj.onc.1203280)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gudjonsson T, Adriance MC, Sternlicht MD, et al. 2005 Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia 10 261272. (https://doi.org/10.1007/s10911-005-9586-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guillen KP, Fujita M, Butterfield AJ, et al. 2022 A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer 3 232250. (https://doi.org/10.1038/s43018-022-00337-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guiu S, Wolfer A, Jacot W, et al. 2014 Invasive lobular breast cancer and its variants: how special are they for systemic therapy decisions? Crit Rev Oncol Hematol 92 235257. (https://doi.org/10.1016/j.critrevonc.2014.07.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamilton KJ, Hewitt SC, Arao Y, et al. 2017 Estrogen hormone biology. Curr Top Dev Biol 125 109146. (https://doi.org/10.1016/bs.ctdb.2016.12.005)

  • Hampsch RA, Wells JD, Traphagen NA, et al. 2020 AMPK activation by metformin promotes survival of dormant ER+ breast cancer cells. Clin Cancer Res 26 37073719. (https://doi.org/10.1158/1078-0432.ccr-20-0269)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han HH, Kim BG, Lee JH, et al. 2016 Angiopoietin-2 promotes ER+ breast cancer cell survival in bone marrow niche. Endocr Relat Cancer 23 609623. (https://doi.org/10.1530/erc-16-0086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanahan D 2022 Hallmarks of cancer: new dimensions. Cancer Discov 12 3146. (https://doi.org/10.1158/2159-8290.cd-21-1059)

  • Hanker AB, Sudhan DR & Arteaga CL 2020 Overcoming endocrine resistance in breast cancer. Cancer Cell 37 496513. (https://doi.org/10.1016/j.ccell.2020.03.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harrod A, Lai C-F, Goldsbrough I, et al. 2022 Genome engineering for estrogen receptor mutations reveals differential responses to anti-estrogens and new prognostic gene signatures for breast cancer. Oncogene 41 49054915. (https://doi.org/10.1038/s41388-022-02483-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hebert JD, Neal JW & Winslow MM 2023 Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 23 391407. (https://doi.org/10.1038/s41568-023-00568-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hickey TE, Selth LA, Chia KM, et al. 2021 The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med 27 310320. (https://doi.org/10.1038/s41591-020-01168-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hiscox S, Baruah B, Smith C, et al. 2012 Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer 12 458. (https://doi.org/10.1186/1471-2407-12-458)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoefnagel LDC, van der Groep P, van de Vijver MJ, et al. 2013 Discordance in ERα, PR and HER2 receptor status across different distant breast cancer metastases within the same patient. Ann Oncol 24 30173023. (https://doi.org/10.1093/annonc/mdt390)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hollestelle A, Nagel JHA, Smid M, et al. 2010 Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat 121 5364. (https://doi.org/10.1007/s10549-009-0460-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holliday DL & Speirs V 2011 Choosing the right cell line for breast cancer research. Breast Cancer Res 13 215. (https://doi.org/10.1186/bcr2889)

  • Hosseinzadeh L, Kikhtyak Z, Laven-Law G, et al. 2024 The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol 25 44. (https://doi.org/10.1186/s13059-023-03161-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hua S, Kittler R & White KP 2009 Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137 12591271. (https://doi.org/10.1016/j.cell.2009.04.043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hurtado A, Holmes KA, Ross-Innes CS, et al. 2011 FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43 2733. (https://doi.org/10.1038/ng.730)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hutten SJ, de Bruijn R, Lutz C, et al. 2023 A living biobank of patient-derived ductal carcinoma in situ mouse-intraductal xenografts identifies risk factors for invasive progression. Cancer Cell 41 9861002.e9. (https://doi.org/10.1016/j.ccell.2023.04.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ijichi N, Shigekawa T, Ikeda K, et al. 2011 Estrogen-related receptor γ modulates cell proliferation and estrogen signaling in breast cancer. J Steroid Biochem Mol Biol 123 17. (https://doi.org/10.1016/j.jsbmb.2010.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jagust P, Powell AM, Ola M, et al. 2024 RET overexpression leads to increased brain metastatic competency in luminal breast cancer. J Natl Cancer Inst 116 16321644. (https://doi.org/10.1093/jnci/djae091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeselsohn R, Yelensky R, Buchwalter G, et al. 2014 Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20 17571767. (https://doi.org/10.1158/1078-0432.ccr-13-2332)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnson RW, Finger EC, Olcina MM, et al. 2016 Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol 18 10781089. (https://doi.org/10.1038/ncb3408)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jordan VC 2013 Estrogen Action, Selective Estrogen Receptor Modulators and Women’s Health: Progress and Promise. London, UK: Imperial College Press. (https://doi.org/10.1142/p868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kabos P, Finlay-Schultz J, Li C, et al. 2012 Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 135 415432. (https://doi.org/10.1007/s10549-012-2164-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kao J, Salari K, Bocanegra M, et al. 2009 Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4 e6146. (https://doi.org/10.1371/journal.pone.0006146)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karmakar S, Jin Y & Nagaich AK 2013 Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity. J Biol Chem 288 2402024034. (https://doi.org/10.1074/jbc.m113.473819)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keelan S, Ola M, Charmsaz S, et al. 2023 Dynamic epi-transcriptomic landscape mapping with disease progression in estrogen receptor-positive breast cancer. Cancer Commun 43 615619. (https://doi.org/10.1002/cac2.12407)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kensler KH, Poole EM, Heng YJ, et al. 2019 Androgen receptor expression and breast cancer survival: results from the nurses’ health studies. J Natl Cancer Inst 111 700708. (https://doi.org/10.1093/jnci/djy173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kienast Y, von Baumgarten L, Fuhrmann M, et al. 2010 Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16 116122. (https://doi.org/10.1038/nm.2072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim K, Lindstrom MJ & Gould MN 2002 Regions of H- and K-ras that provide organ specificity/potency in mammary cancer induction. Cancer Res 62 12411245.

  • Kim J, Koo B-K & Knoblich JA 2020 Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21 571584. (https://doi.org/10.1038/s41580-020-0259-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kinoshita Y, Yoshizawa K, Emoto Y, et al. 2014 Similarity of GATA-3 expression between rat and human mammary glands. J Toxicologic Pathol 27 159162. (https://doi.org/10.1293/tox.2014-0008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirma NB & Tekmal RR 2012 Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations. J Steroid Biochem Mol Biol 131 7682. (https://doi.org/10.1016/j.jsbmb.2011.11.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kronblad A, Hedenfalk I, Nilsson E, et al. 2005 ERK1/2 inhibition increases antiestrogen treatment efficacy by interfering with hypoxia-induced downregulation of ERα: a combination therapy potentially targeting hypoxic and dormant tumor cells. Oncogene 24 68356841. (https://doi.org/10.1038/sj.onc.1208830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laganière J, Deblois G & Giguère V 2005 Functional genomics identifies a mechanism for estrogen activation of the retinoic acid receptor α1 gene in breast cancer cells. Mol Endocrinol 19 15841592. (https://doi.org/10.1210/me.2005-0040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lanz RB, Bulynko Y, Malovannaya A, et al. 2010 Global characterization of transcriptional impact of the SRC-3 coregulator. Mol Endocrinol 24 859872. (https://doi.org/10.1210/me.2009-0499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lasfargues EY & Ozzello L 1958 Cultivation of human breast carcinomas. J Natl Cancer Inst 21 11311147.

  • Lavery DN & McEwan IJ 2005 Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 391 449464. (https://doi.org/10.1042/bj20050872)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leone JP, Vallejo CT, Hassett MJ, et al. 2021 Factors associated with late risks of breast cancer-specific mortality in the SEER registry. Breast Cancer Res Treat 189 203212. (https://doi.org/10.1007/s10549-021-06233-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li S, Shen D, Shao J, et al. 2013 Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4 11161130. (https://doi.org/10.1016/j.celrep.2013.08.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li L, Lin L, Veeraraghavan J, et al. 2020 Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res 22 84. (https://doi.org/10.1186/s13058-020-01325-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li D-H, Liu X-K, Tian X-T, et al. 2023 PPARG: a promising therapeutic target in breast cancer and regulation by natural drugs. PPAR Res 2023 118. (https://doi.org/10.1155/2023/4481354)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lien H-C, Lu Y-S, Cheng A-L, et al. 2006 Differential expression of glucocorticoid receptor in human breast tissues and related neoplasms. J Pathol 209 317327. (https://doi.org/10.1002/path.1982)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lim E, Metzger-Filho O & Winer EP 2012 The natural history of hormone receptor-positive breast cancer. Oncology 26 688694, 696.

  • Lima A & Maddalo D 2021 SEMMs: somatically engineered mouse models. A new tool for in vivo disease modeling for basic and translational research. Front Oncol 11 667189. (https://doi.org/10.3389/fonc.2021.667189)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linnemann JR, Miura H, Meixner LK, et al. 2015 Quantification of regenerative potential in primary human mammary epithelial cells. Development 142 32393251. (https://doi.org/10.1242/dev.123554)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Z, Sahli Z, Wang Y, et al. 2018 Young age at diagnosis is associated with worse prognosis in the luminal A breast cancer subtype: a retrospective institutional cohort study. Breast Cancer Res Treat 172 689702. (https://doi.org/10.1007/s10549-018-4950-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Llorente A, Blasco MT, Espuny I, et al. 2023 MAF amplification licenses ERα through epigenetic remodelling to drive breast cancer metastasis. Nat Cell Biol 25 18331847. (https://doi.org/10.1038/s41556-023-01281-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loo SY, Syn NL, Koh AP-F, et al. 2021 Epigenetic derepression converts PPARγ into a druggable target in triple-negative and endocrine-resistant breast cancers. Cell Death Discov 7 265. (https://doi.org/10.1038/s41420-021-00635-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luzzi KJ, MacDonald IC, Schmidt EE, et al. 1998 Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153 865873. (https://doi.org/10.1016/s0002-9440(10)65628-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magbanua MJM, van’t Veer L, Clark AS, et al. 2023 Outcomes and clinicopathologic characteristics associated with disseminated tumor cells in bone marrow after neoadjuvant chemotherapy in high-risk early stage breast cancer: the I-SPY SURMOUNT study. Breast Cancer Res Treat 198 383390. (https://doi.org/10.1007/s10549-022-06803-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magnani L, Frige G, Gadaleta RM, et al. 2017 Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERα metastatic breast cancer. Nat Genet 49 444450. (https://doi.org/10.1038/ng.3773)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manna S, Bostner J, Sun Y, et al. 2016 ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clin Cancer Res 22 14211431. (https://doi.org/10.1158/1078-0432.ccr-15-0857)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin L-A, Ribas R, Simigdala N, et al. 2017 Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun 8 1865. (https://doi.org/10.1038/s41467-017-01864-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Massagué J & Ganesh K 2021 Metastasis-initiating cells and ecosystems. Cancer Discov 11 971994. (https://doi.org/10.1158/2159-8290.cd-21-0010)

  • Mayayo-Peralta I, Prekovic S & Zwart W 2021a Estrogen receptor on the move: cistromic plasticity and its implications in breast cancer. Mol Aspects Med 78 100939. (https://doi.org/10.1016/j.mam.2020.100939)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mayayo-Peralta I, Zwart W & Prekovic S 2021b Duality of glucocorticoid action in cancer: tumor-suppressor or oncogene? Endocr Relat Cancer 28 R157R171. (https://doi.org/10.1530/erc-20-0489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mayayo-Peralta I, Debets DO, Prekovic S, et al. 2024 Proteomics on malignant pleural effusions reveals ERα loss in metastatic breast cancer associates with SGK1-NDRG1 deregulation. Mol Oncol 18 156169. (https://doi.org/10.1002/1878-0261.13540)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miermont AM, Parrish AR & Furth PA 2010 Role of ERalpha in the differential response of Stat5a loss in susceptibility to mammary preneoplasia and DMBA-induced carcinogenesis. Carcinogenesis 31 11241131. (https://doi.org/10.1093/carcin/bgq048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mohammed H, Russell IA, Stark R, et al. 2015 Progesterone receptor modulates ERα action in breast cancer. Nature 523 313317. (https://doi.org/10.1038/nature14583)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mohibi S, Mirza S, Band H, et al. 2011 Mouse models of estrogen receptor-positive breast cancer. J Carcinog 10 35. (https://doi.org/10.4103/1477-3163.91116)

  • Moreira PI, Custódio J, Moreno A, et al. 2006 Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281 1014310152. (https://doi.org/10.1074/jbc.m510249200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mosele F, Stefanovska B, Lusque A, et al. 2020 Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol 31 377386. (https://doi.org/10.1016/j.annonc.2019.11.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagarajan S, Rao SV, Sutton J, et al. 2020 ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet 52 187197. (https://doi.org/10.1038/s41588-019-0541-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Neve RM, Chin K, Fridlyand J, et al. 2006 A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10 515527. (https://doi.org/10.1016/j.ccr.2006.10.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nguyen B, Fong C, Luthra A, et al. 2022 Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185 563575.e11. (https://doi.org/10.1016/j.cell.2022.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nicotra R, Lutz C, Messal HA, et al. 2024 Rat models of hormone receptor-positive breast cancer. J Mammary Gland Biol Neoplasia 29 12. (https://doi.org/10.1007/s10911-024-09566-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nilsson S, Mäkelä S, Treuter E, et al. 2001 Mechanisms of estrogen action. Physiol Rev 81 15351565. (https://doi.org/10.1152/physrev.2001.81.4.1535)

  • Nobre AR, Risson E, Singh DK, et al. 2021 Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGF-β2. Nat Cancer 2 327339. (https://doi.org/10.1038/s43018-021-00179-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ohnstad HO, Blix ES, Akslen LA, et al. 2024 Impact of Prosigna test on adjuvant treatment decision in lymph node-negative early breast cancer—a prospective national multicentre study (EMIT-1). ESMO Open 9 103475. (https://doi.org/10.1016/j.esmoop.2024.103475)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Osborne CK, Monaco ME, Kahn CR, et al. 1979 Direct inhibition of growth and antagonism of insulin action by glucocorticoids in human breast cancer cells in culture. Cancer Res 39 24222428.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Özdemir BC, Sflomos G & Brisken C 2018 The challenges of modeling hormone receptor-positive breast cancer in mice. Endocr Relat Cancer 25 R319R330. (https://doi.org/10.1530/erc-18-0063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Padmanaban V, Krol I, Suhail Y, et al. 2019 E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573 439444. (https://doi.org/10.1038/s41586-019-1526-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paik S, Shak S, Tang G, et al. 2004 A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New Engl J Med 351 28172826. (https://doi.org/10.1056/nejmoa041588)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Palmieri C, Linden H, Birrell SN, et al. 2024 Activity and safety of enobosarm, a novel, oral, selective androgen receptor modulator, in androgen receptor-positive, oestrogen receptor-positive, and HER2-negative advanced breast cancer (study G200802): a randomised, open label, multicentre, multinational, parallel design, phase 2 trial. Lancet Oncol 25 317325. (https://doi.org/10.1016/s1470-2045(24)00004-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pan H, Gray R, Braybrooke J, et al. 2017 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New Engl J Med 377 18361846. (https://doi.org/10.1056/nejmoa1701830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park S, Chang C-Y, Safi R, et al. 2016 ERRα-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep 15 323335. (https://doi.org/10.1016/j.celrep.2016.03.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel R, Klein P, Tiersten A, et al. 2023 An emerging generation of endocrine therapies in breast cancer: a clinical perspective. NPJ Breast Cancer 9 20. (https://doi.org/10.1038/s41523-023-00523-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patten DK, Corleone G, Győrffy B, et al. 2018 Enhancer mapping uncovers phenotypic heterogeneity and evolution in patients with luminal breast cancer. Nat Med 24 14691480. (https://doi.org/10.1038/s41591-018-0091-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paul MR, Pan T-C, Pant DK, et al. 2020 Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J Clin Invest 130 42524265. (https://doi.org/10.1172/jci129941)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pearson A, Proszek P, Pascual J, et al. 2020 Inactivating NF1 mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin Cancer Res 26 608622. (https://doi.org/10.1158/1078-0432.ccr-18-4044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pecar G, Liu S, Hooda J, et al. 2023 RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 25 26. (https://doi.org/10.1186/s13058-023-01622-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedersen RN, Mellemkjær L, Ejlertsen B, et al. 2022 Mortality after late breast cancer recurrence in Denmark. J Clin Oncol 40 14501463. (https://doi.org/10.1200/jco.21.02062)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Penault-Llorca F & Radosevic-Robin N 2017 Ki67 assessment in breast cancer: an update. Pathology 49 166171. (https://doi.org/10.1016/j.pathol.2016.11.006)

  • Perou CM, Sørlie T, Eisen MB, et al. 2000 Molecular portraits of human breast tumours. Nature 406 747752. (https://doi.org/10.1038/35021093)

  • Polley M-YC, Leung SCY, McShane LM, et al. 2013 An international Ki67 reproducibility study. J Natl Cancer Inst 105 18971906. (https://doi.org/10.1093/jnci/djt306)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prabhu JS, Korlimarla A, Desai K, et al. 2014 A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. J Cancer 5 156165. (https://doi.org/10.7150/jca.7668)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prat A, Galván P, Jimenez B, et al. 2016 Prediction of response to neoadjuvant chemotherapy using core needle biopsy samples with the Prosigna assay. Clin Cancer Res 22 560566. (https://doi.org/10.1158/1078-0432.ccr-15-0630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prekovic S & Zwart W 2023 Inhibiting the glucocorticoid receptor to enhance chemotherapy response. J Clin Oncol 41 47904793. (https://doi.org/10.1200/jco.23.01195)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prekovic S, Schuurman K, Mayayo-Peralta I, et al. 2021 Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun 12 4360. (https://doi.org/10.1038/s41467-021-24537-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prekovic S, Chalkiadakis T, Roest M, et al. 2023 Luminal breast cancer identity is determined by loss of glucocorticoid receptor activity. EMBO Mol Med 15 e17737. (https://doi.org/10.15252/emmm.202317737)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ran R, Harrison H, Syamimi Ariffin N, et al. 2020 A role for CBFβ in maintaining the metastatic phenotype of breast cancer cells. Oncogene 39 26242637. (https://doi.org/10.1038/s41388-020-1170-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raths F, Karimzadeh M, Ing N, et al. 2023 The molecular consequences of androgen activity in the human breast. Cell Genomics 3 100272. (https://doi.org/10.1016/j.xgen.2023.100272)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Razavi P, Chang MT, Xu G, et al. 2018 The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34 427438.e6. (https://doi.org/10.1016/j.ccell.2018.08.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Razavi P, Dickler MN, Shah PD, et al. 2020 Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors