(D Vareslija and S Prekovic contributed equally as senior authors)
The breast epithelium, vital for mammary gland function, is influenced by oestrogen through the oestrogen receptor (ER) signalling pathway. Luminal breast cancer (BC), characterised by ER expression, comprises the majority of all BCs and presents significant clinical challenges due to therapy resistance and recurrence. Despite advancements in understanding luminal disease, improving long-term survival and reducing relapse of BC patients by predicting therapy efficacy and understanding resistance mechanisms remain critical challenges. This review discusses luminal BC biology, focusing on the molecular classification of primary disease, metastatic spread, and experimental models.
Endocrine-Related Cancer is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 4247 | 4247 | 30 |
PDF Downloads | 543 | 543 | 35 |
Ades F, Zardavas D, Bozovic-Spasojevic I, et al. 2014 Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol 32 2794–2803. (https://doi.org/10.1200/jco.2013.54.1870)
Aguirre-Ghiso JA, Estrada Y, Liu D, et al. 2003 ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63 1684–1695.
Aguirre-Ghiso JA, Ossowski L & Rosenbaum SK 2004 Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64 7336–7345. (https://doi.org/10.1158/0008-5472.can-04-0113)
Albrengues J, Shields MA, Ng D, et al. 2018 Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361 eaao4227. (https://doi.org/10.1126/science.aao4227)
Alves CL, Ehmsen S, Terp MG, et al. 2021 Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 12 5112–5115. (https://doi.org/10.1038/s41467-021-25422-9)
Andò S, Malivindi R, Catalano S, et al. 2017 Conditional expression of Ki-RasG12V in the mammary epithelium of transgenic mice induces estrogen receptor alpha (ERα)-positive adenocarcinoma. Oncogene 36 6420–6431. (https://doi.org/10.1038/onc.2017.252)
Angus L, Smid M, Wilting SM, et al. 2019 The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet 51 1450–1458. (https://doi.org/10.1038/s41588-019-0507-7)
Bado I, Gugala Z, Fuqua SAW, et al. 2017 Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 36 4527–4537. (https://doi.org/10.1038/onc.2017.94)
Bado IL, Zhang W, Hu J, et al. 2021 The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells. Developmental Cell 56 1100–1117.e9. (https://doi.org/10.1016/j.devcel.2021.03.008)
Barkan D, El Touny LH, Michalowski AM, et al. 2010 Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70 5706–5716. (https://doi.org/10.1158/0008-5472.can-09-2356)
Barretina J, Caponigro G, Stransky N, et al. 2012 The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483 603–607. (https://doi.org/10.1038/nature11003)
Behbod F, Kittrell FS, LaMarca H, et al. 2009 An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res 11 R66. (https://doi.org/10.1186/bcr2358)
Behbod F, Gomes AM & Machado HL 2018 Modeling human ductal carcinoma in situ in the mouse. J Mammary Gland Biol Neoplasia 23 269–278. (https://doi.org/10.1007/s10911-018-9408-0)
Bernardo GM, Lozada KL, Miedler JD, et al. 2010 FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development 137 2045–2054. (https://doi.org/10.1242/dev.043299)
Berry DA, Cirrincione C, Henderson IC, et al. 2006 Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295 1658–1667. (https://doi.org/10.1001/jama.295.14.1658)
Bondesson M, Hao R, Lin C-Y, et al. 2015 Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta Gene Regul Mech 1849 142–151. (https://doi.org/10.1016/j.bbagrm.2014.06.005)
Braun S, Vogl FD, Naume B, et al. 2005 A pooled analysis of bone marrow micrometastasis in breast cancer. New Engl J Med 353 793–802. (https://doi.org/10.1056/nejmoa050434)
Braun L, Mietzsch F, Seibold P, et al. 2013 Intrinsic breast cancer subtypes defined by estrogen receptor signalling-prognostic relevance of progesterone receptor loss. Mod Pathol 26 1161–1171. (https://doi.org/10.1038/modpathol.2013.60)
Briand P & Lykkesfeldt AE 2001 An in vitro model of human breast carcinogenesis: epigenetic aspects. Breast Cancer Res Treat 65 179–187. (https://doi.org/10.1023/a:1006434503061)
Brisken C & O’Malley B 2010 Hormone action in the mammary gland. Cold Spring Harbor Perspect Biol 2 a003178. (https://doi.org/10.1101/cshperspect.a003178)
Brodie A, Jelovac D, Macedo L, et al. 2005 Therapeutic observations in MCF-7 aromatase xenografts. Clin Cancer Res 11 884s–888s. (https://doi.org/10.1158/1078-0432.884s.11.2)
Brown-Grant K, Exley D & Naftolin F 1970 Peripheral plasma oestradiol and luteinizing hormone concentrations during the oestrous cycle of the rat. J Endocrinol 48 295–296. (https://doi.org/10.1677/joe.0.0480295)
Bu W & Li Y 2024 Advances in immunocompetent mouse and rat models. Cold Spring Harbor Perspect Med 14 a041328. (https://doi.org/10.1101/cshperspect.a041328)
Buxant F, Engohan-Aloghe C & Noël J-C 2010 Estrogen receptor, progesterone receptor, and glucocorticoid receptor expression in normal breast tissue, breast in situ carcinoma, and invasive breast cancer. Appl Immunohistochem Mol Morphol 18 254–257. (https://doi.org/10.1097/pai.0b013e3181c10180)
Cailleau R, Olivé M & Cruciger QV 1978 Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14 911–915. (https://doi.org/10.1007/bf02616120)
Campbell KM, O’Leary KA, Rugowski DE, et al. 2019 A spontaneous aggressive ERα+ mammary tumor model is driven by kras activation. Cell Rep 28 1526–1537.e4. (https://doi.org/10.1016/j.celrep.2019.06.098)
Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. 2013 The cancer genome atlas pan-cancer analysis project. Nat Genet 45 1113–1120. (https://doi.org/10.1038/ng.2764)
Cardiff RD & Wellings SR 1999 The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 4 105–122. (https://doi.org/10.1023/a:1018712905244)
Cardoso F, van’t Veer LJ, Bogaerts J, et al. 2016 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. New Engl J Med 375 717–729. (https://doi.org/10.1056/nejmoa1602253)
Carlson P, Dasgupta A, Grzelak CA, et al. 2019 Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol 21 238–250. (https://doi.org/10.1038/s41556-018-0267-0)
Carroll JS, Liu XS, Brodsky AS, et al. 2005 Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122 33–43. (https://doi.org/10.1016/j.cell.2005.05.008)
Carson-Jurica MA, Schrader WT & O’Malley BW 1990 Steroid receptor family: structure and functions. Endocr Rev 11 201–220. (https://doi.org/10.1210/edrv-11-2-201)
Cejalvo JM, Martínez de Dueñas E, Galván P, et al. 2017 Intrinsic subtypes and gene expression profiles in primary and metastatic breast cancer. Cancer Res 77 2213–2221. (https://doi.org/10.1158/0008-5472.can-16-2717)
Cejalvo JM, Pascual T, Fernández-Martínez A, et al. 2018 Clinical implications of the non-luminal intrinsic subtypes in hormone receptor-positive breast cancer. Cancer Treat Rev 67 63–70. (https://doi.org/10.1016/j.ctrv.2018.04.015)
Chan SR, Vermi W, Luo J, et al. 2012 STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas. Breast Cancer Res 14 R16–R21. (https://doi.org/10.1186/bcr3100)
Chandarlapaty S, Chen D, He W, et al. 2016 Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2 1310–1315. (https://doi.org/10.1001/jamaoncol.2016.1279)
Chapman KM, Medrano GA, Jaichander P, et al. 2015 Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Rep 10 1828–1835. (https://doi.org/10.1016/j.celrep.2015.02.040)
Charmsaz S, Doherty B, Cocchiglia S, et al. 2020 ADAM22/LGI1 complex as a new actionable target for breast cancer brain metastasis. BMC Med 18 349. (https://doi.org/10.1186/s12916-020-01806-4)
Chi D, Singhal H, Li L, et al. 2019 Estrogen receptor signaling is reprogrammed during breast tumorigenesis. Proc Natl Acad Sci U S A 116 11437–11443. (https://doi.org/10.1073/pnas.1819155116)
Chuprin J, Buettner H, Seedhom MO, et al. 2023 Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 20 192–206. (https://doi.org/10.1038/s41571-022-00721-2)
Ciriello G, Gatza ML, Beck AH, et al. 2015 Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163 506–519. (https://doi.org/10.1016/j.cell.2015.09.033)
Ciwinska M, Messal HA, Hristova HR, et al. 2024 Mechanisms that clear mutations drive field cancerization in mammary tissue. Nature 633 198–206. (https://doi.org/10.1038/s41586-024-07882-3)
Clarke R, Jones BC, Sevigny CM, et al. 2021 Experimental models of endocrine responsive breast cancer: strengths, limitations, and use. Cancer Drug Resist 4 762–783. (https://doi.org/10.20517/cdr.2021.33)
Cochrane DR, Bernales S, Jacobsen BM, et al. 2014 Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 16 R7. (https://doi.org/10.1186/bcr3599)
Collin LJ, Yan M, Jiang R, et al. 2019 Oncotype DX recurrence score implications for disparities in chemotherapy and breast cancer mortality in Georgia. NPJ Breast Cancer 5 32. (https://doi.org/10.1038/s41523-019-0129-3)
Colombo N, Van Gorp T, Matulonis UA, et al. 2023 Relacorilant + nab-paclitaxel in patients with recurrent, platinum-resistant ovarian cancer: a three-arm, randomized, controlled, open-label phase II study. J Clin Oncol 41 4779–4789. (https://doi.org/10.1200/jco.22.02624)
Cornelissen LM, Henneman L, Drenth AP, et al. 2019 Exogenous ERα expression in the mammary epithelium decreases over time and does not contribute to p53-deficient mammary tumor formation in mice. J Mammary Gland Biol Neoplasia 24 305–321. (https://doi.org/10.1007/s10911-019-09437-z)
Cosgrove N, Varešlija D, Keelan S, et al. 2022 Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities. Nat Commun 13 514. (https://doi.org/10.1038/s41467-022-27987-5)
Coss CC, Jones A & Dalton JT 2014 Selective androgen receptor modulators as improved androgen therapy for advanced breast cancer. Steroids 90 94–100. (https://doi.org/10.1016/j.steroids.2014.06.010)
Cottu P, Marangoni E, Assayag F, et al. 2011 Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat 133 595–606. (https://doi.org/10.1007/s10549-011-1815-5)
Curtis C, Shah SP, Chin S-F, et al. 2012 The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486 346–352. (https://doi.org/10.1038/nature10983)
D’Ippolito AM, McDowell IC, Barrera A, et al. 2018 Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst 7 146–160.e7. (https://doi.org/10.1016/j.cels.2018.06.007)
Dabydeen SA & Furth PA 2014 Genetically engineered ERα-positive breast cancer mouse models. Endocr Relat Cancer 21 R195–R208. (https://doi.org/10.1530/erc-13-0512)
Dai X, Cheng H, Bai Z, et al. 2017 Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 8 3131–3141. (https://doi.org/10.7150/jca.18457)
Davis BA, Aminawung JA, Abu-Khalaf MM, et al. 2017 Racial and ethnic disparities in oncotype DX test receipt in a statewide population-based study. J Natl Compr Cancer Netw 15 346–354. (https://doi.org/10.6004/jnccn.2017.0034)
Dekkers JF, van Vliet EJ, Sachs N, et al. 2021 Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat Protoc 16 1936–1965. (https://doi.org/10.1038/s41596-020-00474-1)
Deng N, Minoche A, Harvey K, et al. 2022 Deep whole genome sequencing identifies recurrent genomic alterations in commonly used breast cancer cell lines and patient-derived xenograft models. Breast Cancer Res 24 63. (https://doi.org/10.1186/s13058-022-01540-0)
DeRose YS, Wang G, Lin Y-C, et al. 2011 Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17 1514–1520. (https://doi.org/10.1038/nm.2454)
Dieci MV, Orvieto E, Dominici M, et al. 2014 Rare breast cancer subtypes: histological, molecular, and clinical peculiarities. Oncologist 19 805–813. (https://doi.org/10.1634/theoncologist.2014-0108)
Dimitrakakis C, Zhou J & Bondy CA 2002 Androgens and mammary growth and neoplasia. Fertil Sterility 77 (Supplement 4) S26–S33. (https://doi.org/10.1016/s0015-0282(02)02979-5)
Du T, Sikora MJ, Levine KM, et al. 2018 Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res 20 106. (https://doi.org/10.1186/s13058-018-1041-8)
Dvořánková B, Szabo P, Lacina L, et al. 2012 Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem Cell Biol 137 679–685. (https://doi.org/10.1007/s00418-012-0918-3)
Elias AD, Spoelstra NS, Staley AW, et al. 2023 Phase II trial of fulvestrant plus enzalutamide in ER+/HER2− advanced breast cancer. NPJ Breast Cancer 9 41. (https://doi.org/10.1038/s41523-023-00544-z)
Ethier SP 1995 Growth factor synthesis and human breast cancer progression. JNCI J Natl Cancer Inst 87 964–973. (https://doi.org/10.1093/jnci/87.13.964)
Eyre R, Alférez DG, Santiago-Gómez A, et al. 2019 Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun 10 5016. (https://doi.org/10.1038/s41467-019-12807-0)
Farage MA, Neill S & MacLean AB 2009 Physiological changes associated with the menstrual cycle: a review. Obstet Gynecol Surv 64 58–72. (https://doi.org/10.1097/ogx.0b013e3181932a37)
Fehm T, Krawczyk N, Solomayer E-F, et al. 2008 ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res 10 R76. (https://doi.org/10.1186/bcr2143)
Figueroa JD, Pfeiffer RM, Patel DA, et al. 2014 Terminal duct lobular unit involution of the normal breast: implications for breast cancer etiology. J Natl Cancer Inst 106 dju286. (https://doi.org/10.1093/jnci/dju286)
Filipits M, Dubsky P, Rudas M, et al. 2019 Prediction of distant recurrence using EndoPredict among women with ER+, HER2− node-positive and node-negative breast cancer treated with endocrine therapy only. Clin Cancer Res 25 3865–3872. (https://doi.org/10.1158/1078-0432.ccr-19-0376)
Foidart JM, Colin C, Denoo X, et al. 1998 Estradiol and progesterone regulate the proliferation of human breast epithelial cells. Fertil Steril 69 963–969. (https://doi.org/10.1016/s0015-0282(98)00042-9)
Forozan F, Mahlamäki EH, Monni O, et al. 2000 Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res 60 4519–4525.
Gao H, Korn JM, Ferretti S, et al. 2015 High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 21 1318–1325. (https://doi.org/10.1038/nm.3954)
Garcia-Recio S, Thennavan A, East MP, et al. 2020 FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Invest 130 4871–4887. (https://doi.org/10.1172/jci130323)
Garcia-Recio S, Hinoue T, Wheeler GL, et al. 2023 Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat Cancer 4 128–147.
Garnett MJ, Edelman EJ, Heidorn SJ, et al. 2012 Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483 570–575. (https://doi.org/10.1038/nature11005)
Gawrzak S, Rinaldi L, Gregorio S, et al. 2018 MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat Cell Biol 20 211–221. (https://doi.org/10.1038/s41556-017-0021-z)
Gazdar AF, Kurvari V, Virmani A, et al. 1998 Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer 78 766–774. (https://doi.org/10.1002/(sici)1097-0215(19981209)78:6<766::aid-ijc15>3.0.co;2-l)
Giordano C, Catalano S, Panza S, et al. 2011 Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene 30 4129–4140. (https://doi.org/10.1038/onc.2011.124)
Gkountela S, Castro-Giner F, Szczerba BM, et al. 2019 Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176 98–112.e14. (https://doi.org/10.1016/j.cell.2018.11.046)
Goldhirsch A, Winer EP, Coates AS, et al. 2013 Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2013. Ann Oncol 24 2206–2223. (https://doi.org/10.1093/annonc/mdt303)
Green JE, Shibata M-A, Yoshidome K, et al. 2000 The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19 1020–1027. (https://doi.org/10.1038/sj.onc.1203280)
Gudjonsson T, Adriance MC, Sternlicht MD, et al. 2005 Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia 10 261–272. (https://doi.org/10.1007/s10911-005-9586-4)
Guillen KP, Fujita M, Butterfield AJ, et al. 2022 A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer 3 232–250. (https://doi.org/10.1038/s43018-022-00337-6)
Guiu S, Wolfer A, Jacot W, et al. 2014 Invasive lobular breast cancer and its variants: how special are they for systemic therapy decisions? Crit Rev Oncol Hematol 92 235–257. (https://doi.org/10.1016/j.critrevonc.2014.07.003)
Hamilton KJ, Hewitt SC, Arao Y, et al. 2017 Estrogen hormone biology. Curr Top Dev Biol 125 109–146. (https://doi.org/10.1016/bs.ctdb.2016.12.005)
Hampsch RA, Wells JD, Traphagen NA, et al. 2020 AMPK activation by metformin promotes survival of dormant ER+ breast cancer cells. Clin Cancer Res 26 3707–3719. (https://doi.org/10.1158/1078-0432.ccr-20-0269)
Han HH, Kim BG, Lee JH, et al. 2016 Angiopoietin-2 promotes ER+ breast cancer cell survival in bone marrow niche. Endocr Relat Cancer 23 609–623. (https://doi.org/10.1530/erc-16-0086)
Hanahan D 2022 Hallmarks of cancer: new dimensions. Cancer Discov 12 31–46. (https://doi.org/10.1158/2159-8290.cd-21-1059)
Hanker AB, Sudhan DR & Arteaga CL 2020 Overcoming endocrine resistance in breast cancer. Cancer Cell 37 496–513. (https://doi.org/10.1016/j.ccell.2020.03.009)
Harrod A, Lai C-F, Goldsbrough I, et al. 2022 Genome engineering for estrogen receptor mutations reveals differential responses to anti-estrogens and new prognostic gene signatures for breast cancer. Oncogene 41 4905–4915. (https://doi.org/10.1038/s41388-022-02483-8)
Hebert JD, Neal JW & Winslow MM 2023 Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 23 391–407. (https://doi.org/10.1038/s41568-023-00568-4)
Hickey TE, Selth LA, Chia KM, et al. 2021 The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med 27 310–320. (https://doi.org/10.1038/s41591-020-01168-7)
Hiscox S, Baruah B, Smith C, et al. 2012 Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer 12 458. (https://doi.org/10.1186/1471-2407-12-458)
Hoefnagel LDC, van der Groep P, van de Vijver MJ, et al. 2013 Discordance in ERα, PR and HER2 receptor status across different distant breast cancer metastases within the same patient. Ann Oncol 24 3017–3023. (https://doi.org/10.1093/annonc/mdt390)
Hollestelle A, Nagel JHA, Smid M, et al. 2010 Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat 121 53–64. (https://doi.org/10.1007/s10549-009-0460-8)
Holliday DL & Speirs V 2011 Choosing the right cell line for breast cancer research. Breast Cancer Res 13 215. (https://doi.org/10.1186/bcr2889)
Hosseinzadeh L, Kikhtyak Z, Laven-Law G, et al. 2024 The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol 25 44. (https://doi.org/10.1186/s13059-023-03161-y)
Hua S, Kittler R & White KP 2009 Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137 1259–1271. (https://doi.org/10.1016/j.cell.2009.04.043)
Hurtado A, Holmes KA, Ross-Innes CS, et al. 2011 FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43 27–33. (https://doi.org/10.1038/ng.730)
Hutten SJ, de Bruijn R, Lutz C, et al. 2023 A living biobank of patient-derived ductal carcinoma in situ mouse-intraductal xenografts identifies risk factors for invasive progression. Cancer Cell 41 986–1002.e9. (https://doi.org/10.1016/j.ccell.2023.04.002)
Ijichi N, Shigekawa T, Ikeda K, et al. 2011 Estrogen-related receptor γ modulates cell proliferation and estrogen signaling in breast cancer. J Steroid Biochem Mol Biol 123 1–7. (https://doi.org/10.1016/j.jsbmb.2010.09.002)
Jagust P, Powell AM, Ola M, et al. 2024 RET overexpression leads to increased brain metastatic competency in luminal breast cancer. J Natl Cancer Inst 116 1632–1644. (https://doi.org/10.1093/jnci/djae091)
Jeselsohn R, Yelensky R, Buchwalter G, et al. 2014 Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20 1757–1767. (https://doi.org/10.1158/1078-0432.ccr-13-2332)
Johnson RW, Finger EC, Olcina MM, et al. 2016 Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol 18 1078–1089. (https://doi.org/10.1038/ncb3408)
Jordan VC 2013 Estrogen Action, Selective Estrogen Receptor Modulators and Women’s Health: Progress and Promise. London, UK: Imperial College Press. (https://doi.org/10.1142/p868)
Kabos P, Finlay-Schultz J, Li C, et al. 2012 Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 135 415–432. (https://doi.org/10.1007/s10549-012-2164-8)
Kao J, Salari K, Bocanegra M, et al. 2009 Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4 e6146. (https://doi.org/10.1371/journal.pone.0006146)
Karmakar S, Jin Y & Nagaich AK 2013 Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity. J Biol Chem 288 24020–24034. (https://doi.org/10.1074/jbc.m113.473819)
Keelan S, Ola M, Charmsaz S, et al. 2023 Dynamic epi-transcriptomic landscape mapping with disease progression in estrogen receptor-positive breast cancer. Cancer Commun 43 615–619. (https://doi.org/10.1002/cac2.12407)
Kensler KH, Poole EM, Heng YJ, et al. 2019 Androgen receptor expression and breast cancer survival: results from the nurses’ health studies. J Natl Cancer Inst 111 700–708. (https://doi.org/10.1093/jnci/djy173)
Kienast Y, von Baumgarten L, Fuhrmann M, et al. 2010 Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16 116–122. (https://doi.org/10.1038/nm.2072)
Kim K, Lindstrom MJ & Gould MN 2002 Regions of H- and K-ras that provide organ specificity/potency in mammary cancer induction. Cancer Res 62 1241–1245.
Kim J, Koo B-K & Knoblich JA 2020 Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21 571–584. (https://doi.org/10.1038/s41580-020-0259-3)
Kinoshita Y, Yoshizawa K, Emoto Y, et al. 2014 Similarity of GATA-3 expression between rat and human mammary glands. J Toxicologic Pathol 27 159–162. (https://doi.org/10.1293/tox.2014-0008)
Kirma NB & Tekmal RR 2012 Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations. J Steroid Biochem Mol Biol 131 76–82. (https://doi.org/10.1016/j.jsbmb.2011.11.005)
Kronblad A, Hedenfalk I, Nilsson E, et al. 2005 ERK1/2 inhibition increases antiestrogen treatment efficacy by interfering with hypoxia-induced downregulation of ERα: a combination therapy potentially targeting hypoxic and dormant tumor cells. Oncogene 24 6835–6841. (https://doi.org/10.1038/sj.onc.1208830)
Laganière J, Deblois G & Giguère V 2005 Functional genomics identifies a mechanism for estrogen activation of the retinoic acid receptor α1 gene in breast cancer cells. Mol Endocrinol 19 1584–1592. (https://doi.org/10.1210/me.2005-0040)
Lanz RB, Bulynko Y, Malovannaya A, et al. 2010 Global characterization of transcriptional impact of the SRC-3 coregulator. Mol Endocrinol 24 859–872. (https://doi.org/10.1210/me.2009-0499)
Lasfargues EY & Ozzello L 1958 Cultivation of human breast carcinomas. J Natl Cancer Inst 21 1131–1147.
Lavery DN & McEwan IJ 2005 Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 391 449–464. (https://doi.org/10.1042/bj20050872)
Leone JP, Vallejo CT, Hassett MJ, et al. 2021 Factors associated with late risks of breast cancer-specific mortality in the SEER registry. Breast Cancer Res Treat 189 203–212. (https://doi.org/10.1007/s10549-021-06233-4)
Li S, Shen D, Shao J, et al. 2013 Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4 1116–1130. (https://doi.org/10.1016/j.celrep.2013.08.022)
Li L, Lin L, Veeraraghavan J, et al. 2020 Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res 22 84. (https://doi.org/10.1186/s13058-020-01325-3)
Li D-H, Liu X-K, Tian X-T, et al. 2023 PPARG: a promising therapeutic target in breast cancer and regulation by natural drugs. PPAR Res 2023 1–18. (https://doi.org/10.1155/2023/4481354)
Lien H-C, Lu Y-S, Cheng A-L, et al. 2006 Differential expression of glucocorticoid receptor in human breast tissues and related neoplasms. J Pathol 209 317–327. (https://doi.org/10.1002/path.1982)
Lim E, Metzger-Filho O & Winer EP 2012 The natural history of hormone receptor-positive breast cancer. Oncology 26 688–694, 696.
Lima A & Maddalo D 2021 SEMMs: somatically engineered mouse models. A new tool for in vivo disease modeling for basic and translational research. Front Oncol 11 667189. (https://doi.org/10.3389/fonc.2021.667189)
Linnemann JR, Miura H, Meixner LK, et al. 2015 Quantification of regenerative potential in primary human mammary epithelial cells. Development 142 3239–3251. (https://doi.org/10.1242/dev.123554)
Liu Z, Sahli Z, Wang Y, et al. 2018 Young age at diagnosis is associated with worse prognosis in the luminal A breast cancer subtype: a retrospective institutional cohort study. Breast Cancer Res Treat 172 689–702. (https://doi.org/10.1007/s10549-018-4950-4)
Llorente A, Blasco MT, Espuny I, et al. 2023 MAF amplification licenses ERα through epigenetic remodelling to drive breast cancer metastasis. Nat Cell Biol 25 1833–1847. (https://doi.org/10.1038/s41556-023-01281-y)
Loo SY, Syn NL, Koh AP-F, et al. 2021 Epigenetic derepression converts PPARγ into a druggable target in triple-negative and endocrine-resistant breast cancers. Cell Death Discov 7 265. (https://doi.org/10.1038/s41420-021-00635-5)
Luzzi KJ, MacDonald IC, Schmidt EE, et al. 1998 Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153 865–873. (https://doi.org/10.1016/s0002-9440(10)65628-3)
Magbanua MJM, van’t Veer L, Clark AS, et al. 2023 Outcomes and clinicopathologic characteristics associated with disseminated tumor cells in bone marrow after neoadjuvant chemotherapy in high-risk early stage breast cancer: the I-SPY SURMOUNT study. Breast Cancer Res Treat 198 383–390. (https://doi.org/10.1007/s10549-022-06803-0)
Magnani L, Frige G, Gadaleta RM, et al. 2017 Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERα metastatic breast cancer. Nat Genet 49 444–450. (https://doi.org/10.1038/ng.3773)
Manna S, Bostner J, Sun Y, et al. 2016 ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clin Cancer Res 22 1421–1431. (https://doi.org/10.1158/1078-0432.ccr-15-0857)
Martin L-A, Ribas R, Simigdala N, et al. 2017 Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun 8 1865. (https://doi.org/10.1038/s41467-017-01864-y)
Massagué J & Ganesh K 2021 Metastasis-initiating cells and ecosystems. Cancer Discov 11 971–994. (https://doi.org/10.1158/2159-8290.cd-21-0010)
Mayayo-Peralta I, Prekovic S & Zwart W 2021a Estrogen receptor on the move: cistromic plasticity and its implications in breast cancer. Mol Aspects Med 78 100939. (https://doi.org/10.1016/j.mam.2020.100939)
Mayayo-Peralta I, Zwart W & Prekovic S 2021b Duality of glucocorticoid action in cancer: tumor-suppressor or oncogene? Endocr Relat Cancer 28 R157–R171. (https://doi.org/10.1530/erc-20-0489)
Mayayo-Peralta I, Debets DO, Prekovic S, et al. 2024 Proteomics on malignant pleural effusions reveals ERα loss in metastatic breast cancer associates with SGK1-NDRG1 deregulation. Mol Oncol 18 156–169. (https://doi.org/10.1002/1878-0261.13540)
Miermont AM, Parrish AR & Furth PA 2010 Role of ERalpha in the differential response of Stat5a loss in susceptibility to mammary preneoplasia and DMBA-induced carcinogenesis. Carcinogenesis 31 1124–1131. (https://doi.org/10.1093/carcin/bgq048)
Mohammed H, Russell IA, Stark R, et al. 2015 Progesterone receptor modulates ERα action in breast cancer. Nature 523 313–317. (https://doi.org/10.1038/nature14583)
Mohibi S, Mirza S, Band H, et al. 2011 Mouse models of estrogen receptor-positive breast cancer. J Carcinog 10 35. (https://doi.org/10.4103/1477-3163.91116)
Moreira PI, Custódio J, Moreno A, et al. 2006 Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281 10143–10152. (https://doi.org/10.1074/jbc.m510249200)
Mosele F, Stefanovska B, Lusque A, et al. 2020 Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol 31 377–386. (https://doi.org/10.1016/j.annonc.2019.11.006)
Nagarajan S, Rao SV, Sutton J, et al. 2020 ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet 52 187–197. (https://doi.org/10.1038/s41588-019-0541-5)
Neve RM, Chin K, Fridlyand J, et al. 2006 A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10 515–527. (https://doi.org/10.1016/j.ccr.2006.10.008)
Nguyen B, Fong C, Luthra A, et al. 2022 Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185 563–575.e11. (https://doi.org/10.1016/j.cell.2022.01.003)
Nicotra R, Lutz C, Messal HA, et al. 2024 Rat models of hormone receptor-positive breast cancer. J Mammary Gland Biol Neoplasia 29 12. (https://doi.org/10.1007/s10911-024-09566-0)
Nilsson S, Mäkelä S, Treuter E, et al. 2001 Mechanisms of estrogen action. Physiol Rev 81 1535–1565. (https://doi.org/10.1152/physrev.2001.81.4.1535)
Nobre AR, Risson E, Singh DK, et al. 2021 Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGF-β2. Nat Cancer 2 327–339. (https://doi.org/10.1038/s43018-021-00179-8)
Ohnstad HO, Blix ES, Akslen LA, et al. 2024 Impact of Prosigna test on adjuvant treatment decision in lymph node-negative early breast cancer—a prospective national multicentre study (EMIT-1). ESMO Open 9 103475. (https://doi.org/10.1016/j.esmoop.2024.103475)
Osborne CK, Monaco ME, Kahn CR, et al. 1979 Direct inhibition of growth and antagonism of insulin action by glucocorticoids in human breast cancer cells in culture. Cancer Res 39 2422–2428.
Özdemir BC, Sflomos G & Brisken C 2018 The challenges of modeling hormone receptor-positive breast cancer in mice. Endocr Relat Cancer 25 R319–R330. (https://doi.org/10.1530/erc-18-0063)
Padmanaban V, Krol I, Suhail Y, et al. 2019 E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573 439–444. (https://doi.org/10.1038/s41586-019-1526-3)
Paik S, Shak S, Tang G, et al. 2004 A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New Engl J Med 351 2817–2826. (https://doi.org/10.1056/nejmoa041588)
Palmieri C, Linden H, Birrell SN, et al. 2024 Activity and safety of enobosarm, a novel, oral, selective androgen receptor modulator, in androgen receptor-positive, oestrogen receptor-positive, and HER2-negative advanced breast cancer (study G200802): a randomised, open label, multicentre, multinational, parallel design, phase 2 trial. Lancet Oncol 25 317–325. (https://doi.org/10.1016/s1470-2045(24)00004-4)
Pan H, Gray R, Braybrooke J, et al. 2017 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New Engl J Med 377 1836–1846. (https://doi.org/10.1056/nejmoa1701830)
Park S, Chang C-Y, Safi R, et al. 2016 ERRα-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep 15 323–335. (https://doi.org/10.1016/j.celrep.2016.03.026)
Patel R, Klein P, Tiersten A, et al. 2023 An emerging generation of endocrine therapies in breast cancer: a clinical perspective. NPJ Breast Cancer 9 20. (https://doi.org/10.1038/s41523-023-00523-4)
Patten DK, Corleone G, Győrffy B, et al. 2018 Enhancer mapping uncovers phenotypic heterogeneity and evolution in patients with luminal breast cancer. Nat Med 24 1469–1480. (https://doi.org/10.1038/s41591-018-0091-x)
Paul MR, Pan T-C, Pant DK, et al. 2020 Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J Clin Invest 130 4252–4265. (https://doi.org/10.1172/jci129941)
Pearson A, Proszek P, Pascual J, et al. 2020 Inactivating NF1 mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin Cancer Res 26 608–622. (https://doi.org/10.1158/1078-0432.ccr-18-4044)
Pecar G, Liu S, Hooda J, et al. 2023 RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 25 26. (https://doi.org/10.1186/s13058-023-01622-7)
Pedersen RN, Mellemkjær L, Ejlertsen B, et al. 2022 Mortality after late breast cancer recurrence in Denmark. J Clin Oncol 40 1450–1463. (https://doi.org/10.1200/jco.21.02062)
Penault-Llorca F & Radosevic-Robin N 2017 Ki67 assessment in breast cancer: an update. Pathology 49 166–171. (https://doi.org/10.1016/j.pathol.2016.11.006)
Perou CM, Sørlie T, Eisen MB, et al. 2000 Molecular portraits of human breast tumours. Nature 406 747–752. (https://doi.org/10.1038/35021093)
Polley M-YC, Leung SCY, McShane LM, et al. 2013 An international Ki67 reproducibility study. J Natl Cancer Inst 105 1897–1906. (https://doi.org/10.1093/jnci/djt306)
Prabhu JS, Korlimarla A, Desai K, et al. 2014 A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. J Cancer 5 156–165. (https://doi.org/10.7150/jca.7668)
Prat A, Galván P, Jimenez B, et al. 2016 Prediction of response to neoadjuvant chemotherapy using core needle biopsy samples with the Prosigna assay. Clin Cancer Res 22 560–566. (https://doi.org/10.1158/1078-0432.ccr-15-0630)
Prekovic S & Zwart W 2023 Inhibiting the glucocorticoid receptor to enhance chemotherapy response. J Clin Oncol 41 4790–4793. (https://doi.org/10.1200/jco.23.01195)
Prekovic S, Schuurman K, Mayayo-Peralta I, et al. 2021 Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun 12 4360. (https://doi.org/10.1038/s41467-021-24537-3)
Prekovic S, Chalkiadakis T, Roest M, et al. 2023 Luminal breast cancer identity is determined by loss of glucocorticoid receptor activity. EMBO Mol Med 15 e17737. (https://doi.org/10.15252/emmm.202317737)
Ran R, Harrison H, Syamimi Ariffin N, et al. 2020 A role for CBFβ in maintaining the metastatic phenotype of breast cancer cells. Oncogene 39 2624–2637. (https://doi.org/10.1038/s41388-020-1170-2)
Raths F, Karimzadeh M, Ing N, et al. 2023 The molecular consequences of androgen activity in the human breast. Cell Genomics 3 100272. (https://doi.org/10.1016/j.xgen.2023.100272)
Razavi P, Chang MT, Xu G, et al. 2018 The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34 427–438.e6. (https://doi.org/10.1016/j.ccell.2018.08.008)
Razavi P, Dickler MN, Shah PD, et al. 2020 Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors