Gut microbial and functional alterations lead to metagenomic signatures for midgut neuroendocrine tumor patients and for carcinoid syndrome

in Endocrine-Related Cancer
Authors:
Merijn C F Mulders ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands

Search for other papers by Merijn C F Mulders in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4590-5925
,
Peter M Van Koetsveld ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands

Search for other papers by Peter M Van Koetsveld in
Current site
Google Scholar
PubMed
Close
,
Richard A Feelders ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands

Search for other papers by Richard A Feelders in
Current site
Google Scholar
PubMed
Close
,
Leo J Hofland ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands

Search for other papers by Leo J Hofland in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4897-2197
,
Wouter W de Herder ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands

Search for other papers by Wouter W de Herder in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1463-5165
,
Robert Kraaij Laboratory of Population Genomics, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands

Search for other papers by Robert Kraaij in
Current site
Google Scholar
PubMed
Close
, and
Johannes Hofland ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands

Search for other papers by Johannes Hofland in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0679-6209

Correspondence should be addressed to M C F Mulders: m.mulders@erasmusmc.nl

This paper is part of a special collection highlighting the work of emerging leaders in the endocrine cancer field.

Restricted access
Rent on DeepDyve

Sign up for journal news

Midgut neuroendocrine tumors (NET) derive from enterochromaffin cells, which have a close interrelationship with intestinal microbiota. Recently, we have utilized 16S rRNA sequencing to uncover that midgut NET patients have a depleted gut microbiome and a specific fecal microbial signature. This study aims to validate these findings and to further characterize the role of microbes and microbial metabolic pathways in midgut NET patients with and without carcinoid syndrome (CS). Fecal samples from 60 midgut NET patients and 20 household-matched controls were subjected to whole metagenome sequencing. The gut microbial community composition of midgut NET patients differed from that of controls, with 2 genera, 17 species and 9 microbial pathways showing differential abundance (P < 0.001). No differences in the microbial composition were observed between midgut NET patients with and without CS (P > 0.05). However, we did observe changes in inter-genus correlations of Bacteroides, Odoribacter, Parasutterella, Klebsiella, Ruminococcus and Proteobacteria when comparing these two patient groups. A signature of 16 microbial species (area under the receiver operating characteristics (AUROC) curve 0.892) or 18 microbial pathways (AUROC 0.909) accurately predicted the presence of a midgut NET. Furthermore, a microbial signature consisting of 14 functional microbial pathways distinguished CS patients from non-CS patients (AUROC 0.807). Thus, this study confirms that the gut microbiome of midgut NET patients is altered at the metagenomic level, which is not related to the presence of CS. A fecal microbial signature could constitute a novel biomarker for the diagnosis of midgut NET or CS.

 

  • Collapse
  • Expand
  • Beghini F, Mciver LJ, Blanco-Míguez A, et al. 2021 Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 10 e65088. (https://doi.org/10.7554/elife.65088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bellono NW, Bayrer JR, Leitch DB, et al. 2017 Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170 185198 e16. (https://doi.org/10.1016/j.cell.2017.05.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang PV, Hao L, Offermanns S, et al. 2014 The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111 22472252. (https://doi.org/10.1073/pnas.1322269111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dasari A, Shen C, Halperin D, et al. 2017 Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 3 13351342. (https://doi.org/10.1001/jamaoncol.2017.0589)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, et al. 2019 Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 9 1143. (https://doi.org/10.3389/fonc.2019.01143)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dörffel Y, Swidsinski A, Loening-Baucke V, et al. 2012 Common biostructure of the colonic microbiota in neuroendocrine tumors and Crohn's disease and the effect of therapy. Inflamm Bowel Dis 18 16631671. (https://doi.org/10.1002/ibd.21923)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Durazzi F, Sala C, Castellani G, et al. 2021 Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep 11 3030. (https://doi.org/10.1038/s41598-021-82726-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ewels P, Magnusson M, Lundin S, et al. 2016 MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32 30473048. (https://doi.org/10.1093/bioinformatics/btw354)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao B, Chi L, Zhu Y, et al. 2021 An introduction to next generation sequencing bioinformatic analysis in gut microbiome studies. Biomolecules 11 530. (https://doi.org/10.3390/biom11040530)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grozinsky-Glasberg S, Davar J, Hofland J, et al. 2022 European Neuroendocrine Tumor Society (ENETS) 2022 guidance paper for carcinoid syndrome and carcinoid heart disease. J Neuroendocrinol 34 e13146. (https://doi.org/10.1111/jne.13146)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Halperin DM, Shen C, Dasari A, et al. 2017 Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol 18 525534. (https://doi.org/10.1016/s1470-2045(17)30110-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Helmink BA, Khan MAW, Hermann A, et al. 2019 The microbiome, cancer, and cancer therapy. Nat Med 25 377388. (https://doi.org/10.1038/s41591-019-0377-7)

  • Hofland J, Kaltsas G & de Herder WW 2020 Advances in the diagnosis and management of well-differentiated neuroendocrine neoplasms. Endocr Rev 41 371403. (https://doi.org/10.1210/endrev/bnz004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu W, Chen ZM, Li XX, et al. 2022 Faecal microbiome and metabolic signatures in rectal neuroendocrine tumors. Theranostics 12 20152027. (https://doi.org/10.7150/thno.66464)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jovel J, Patterson J, Wang W, et al. 2016 Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7 459. (https://doi.org/10.3389/fmicb.2016.00459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karim MR, Iqbal S, Mohammad S, et al. 2024 Butyrate’s (a short-chain fatty acid) microbial synthesis, absorption, and preventive roles against colorectal and lung cancer. Arch Microbiol 206 137. (https://doi.org/10.1007/s00203-024-03834-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kihara A 2016 Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 63 5069. (https://doi.org/10.1016/j.plipres.2016.04.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu L & Shah K 2022 The potential of the gut microbiome to reshape the cancer therapy paradigm: a review. JAMA Oncol 8 10591067. (https://doi.org/10.1001/jamaoncol.2022.0494)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mirzayi C, Renson A, Furlanello C, et al. 2021 Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med 27 18851892. (https://doi.org/10.1038/s41591-021-01552-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mohamed A, Asa SL, Mccormick T, et al. 2022 The role of the microbiome in gastroentero-pancreatic neuroendocrine neoplasms (GEP-NENs). Curr Issues Mol Biol 44 20152028. (https://doi.org/10.3390/cimb44050136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulders MCF, Audhoe AS, Van Koetsveld PM, et al. 2024a Midgut neuroendocrine tumor patients have a depleted gut microbiome with a discriminative signature. Eur J Cancer 197 113472. (https://doi.org/10.1016/j.ejca.2023.113472)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulders MCF, De Herder WW & Hofland J 2024b What is carcinoid syndrome? A critical appraisal of its proposed mediators. Endocr Rev 45 351360. (https://doi.org/10.1210/endrev/bnad035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Palarea-Albaladejo J & Martín-Fernández JA 2015 zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometr Intell Lab Syst 143 8596. (https://doi.org/10.1016/j.chemolab.2015.02.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peschel S, Müller CL, von Mutius E, et al. 2020 NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform 22 bbaa290. (https://doi.org/10.1093/bib/bbaa290)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rindi G, Mete O, Uccella S, et al. 2022 Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol 33 115154. (https://doi.org/10.1007/s12022-022-09708-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanguy E, de Bagneaux PC, Kassas N, et al. 2020 Mono- and poly-unsaturated phosphatidic acid regulate distinct steps of regulated exocytosis in neuroendocrine cells. Cell Rep 32 108026. (https://doi.org/10.1016/j.celrep.2020.108026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Truong DT, Franzosa EA, Tickle TL, et al. 2015 MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12 902903. (https://doi.org/10.1038/nmeth.3589)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsay JCJ, Wu BG, Sulaiman I, et al. 2021 Lower airway dysbiosis affects lung cancer progression. Cancer Discov 11 293307. (https://doi.org/10.1158/2159-8290.cd-20-0263)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vitale G, Dicitore A, Barrea L, et al. 2021 From microbiota toward gastro-enteropancreatic neuroendocrine neoplasms: are we on the highway to hell? Rev Endocr Metab Disord 22 511525. (https://doi.org/10.1007/s11154-020-09589-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Webster AP & Thirlwell C 2023 The molecular biology of midgut neuroendocrine neoplasms. Endocr Rev 45 343350. (https://doi.org/10.1210/endrev/bnad034)

  • White BE, Rous B, Chandrakumaran K, et al. 2022 Incidence and survival of neuroendocrine neoplasia in England 1995–2018: a retrospective, population-based study. Lancet Reg Health Eur 23 100510. (https://doi.org/10.1016/j.lanepe.2022.100510)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wirbel J, Zych K, Essex M, et al. 2021 Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol 22 93. (https://doi.org/10.1186/s13059-021-02306-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yano JM, Yu K, Donaldson GP, et al. 2015 Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 264276. (https://doi.org/10.1016/j.cell.2015.02.047)

    • PubMed
    • Search Google Scholar
    • Export Citation