Bone metastasis in endocrine-related cancer: unravelling invasion and destruction

in Endocrine-Related Cancer
Authors:
Huong Q Duong School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia

Search for other papers by Huong Q Duong in
Current site
Google Scholar
PubMed
Close
,
Georgia Kafer School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia

Search for other papers by Georgia Kafer in
Current site
Google Scholar
PubMed
Close
, and
Michelle Maugham-Macan School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia

Search for other papers by Michelle Maugham-Macan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5775-5162

Correspondence should be addressed to M Maugham-Macan: mmaughammacan@usc.edu.au

This paper is part of a special collection highlighting the work of emerging leaders in the endocrine cancer field.

Restricted access
Rent on DeepDyve

Sign up for journal news

Bone is a common and debilitating site for metastatic cancer cell expansion. Skeletal metastasis is a multistage process, with primary stages of circulating tumour cells, progressing to a dormant state in vasculature and bone marrow niches, followed by tumourigenic reactivation, proliferation and finally bone destruction. The frequency of bone metastasis is reconciled in Paget’s ‘seed and soil’ hypothesis, where a conducive microenvironment (bone niche) is essential for cancer cell colonisation. Cancer cells can mimic bone cells (osteomimicry) and interact with the bone marrow’s vascular architecture, utilising pathways akin to haematopoietic stem cell expansion. Current research suggests that each phase of bone metastasis is associated with specific gene expression and protein abundance patterns. For example, E-selectin, CXCR-4 and CXCL-12 are crucial for cancer cell homing, dormancy and colonisation of bone tissue. In contrast, different primary cancers appear to have unique staging profiles. In prostate cancer, dormancy is modulated by the CXCR-4/CXCL-12, ANXA2/CXCL12 and GAS6 pathways, while in breast cancer, dormancy involves ERK1/2, p38, MSK1, LIF, BMP-7, TGF-β1/2 and bone resorption factors. Conversely, osteoblastic metastasis in both breast and prostate cancers is characterised by ET-1, Dkk1 suppression and the release of IL-6, MCP-1, VEGF, FGF and IGF, while osteolytic metastasis primarily depends on PTHrP, RANKL, OPG, TGF-β, IGF, TNF-α, IL-1 and IL-7. Understanding the complex molecular mechanisms facilitating cancer cell colonisation and expansion in bone tissues is essential for developing effective treatments to prevent bone metastases. In this review, we discuss current theories linking bone remodelling with bone.

 

  • Collapse
  • Expand
  • Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, et al. 2022 Current status of the diagnosis and management of osteoporosis. Int J Mol Sci 23 9465. (https://doi.org/10.3390/ijms23169465)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alam I, Alkhouli M, Gerard-O’Riley RL, et al. 2016 Osteoblast-specific overexpression of human WNT16 increases both cortical and trabecular bone mass and structure in mice. Endocrinology 157 722736. (https://doi.org/10.1210/en.2015-1281)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alexander KA, Chang MK, Maylin ER, et al. 2011 Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26 15171532. (https://doi.org/10.1002/jbmr.354)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Balkwill F & Joffroy C 2010 TNF: a tumor-suppressing factor or a tumor-promoting factor? Future Oncol 6 18331836. (https://doi.org/10.2217/fon.10.155)

  • Barker HE, Cox TR & Erler JT 2012 The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12 540552. (https://doi.org/10.1038/nrc3319)

  • Bartel DP 2009 MicroRNAs: target recognition and regulatory functions. Cell 136 215233. (https://doi.org/10.1016/j.cell.2009.01.002)

  • Bennett CN, Longo KA, Wright WS, et al. 2005 Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102 33243329. (https://doi.org/10.1073/pnas.0408742102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonewald LF 2007 Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116 281290. (https://doi.org/10.1196/annals.1402.018)

  • Boudot C, Hénaut L, Thiem U, et al. 2017 Overexpression of a functional calcium-sensing receptor dramatically increases osteolytic potential of MDA-MB-231 cells in a mouse model of bone metastasis through epiregulin-mediated osteoprotegerin downregulation. Oncotarget 8 5646056472. (https://doi.org/10.18632/oncotarget.16999)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boyce BF, Yao Z & Xing L 2009 Osteoclasts have multiple roles in bone in addition to bone resorption. Crit Rev Eukaryot Gene Expr 19 171180. (https://doi.org/10.1615/critreveukargeneexpr.v19.i3.10)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buijs JT, van der Horst G, van den Hoogen C, et al. 2011 The BMP2/7 heterodimer inhibits the human breast cancer stem cell subpopulation and bone metastases formation. Oncogene 31 21642174. (https://doi.org/10.1038/onc.2011.400)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cackowski FC, Eber MR, Rhee J, et al. 2017 Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J Cell Biochem 118 891902. (https://doi.org/10.1002/jcb.25768)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chambers AF, Naumov GN, Varghese HJ, et al. 2001 Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10 243255.

  • Chang MK, Raggatt L-J, Alexander KA, et al. 2008 Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181 12321244. (https://doi.org/10.4049/jimmunol.181.2.1232)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clines GA & Guise TA 2008 Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med 10 e7. (https://doi.org/10.1017/S1462399408000616)

  • Coleman RE 2001 Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27 165176. (https://doi.org/10.1053/ctrv.2000.0210)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cox TR, Rumney RMH, Schoof EM, et al. 2015 Retracted article: the hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522 106110. (https://doi.org/10.1038/nature14492)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dallas SL & Bonewald LF 2010 Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci 1192 437443. (https://doi.org/10.1111/j.1749-6632.2009.05246.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Day TF, Guo X, Garrett-Beal L, et al. 2005 Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8 739750. (https://doi.org/10.1016/j.devcel.2005.03.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elefteriou F, Ahn JD, Takeda S, et al. 2005 Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434 514520. (https://doi.org/10.1038/nature03398)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eyre R, Alférez DG, Santiago-Gómez A, et al. 2019 Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun 10 5016. (https://doi.org/10.1038/s41467-019-12807-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franz-Odendaal TA, Hall BK & Witten PE 2006 Buried alive: how osteoblasts become osteocytes. Dev Dyn 235 176190. (https://doi.org/10.1002/dvdy.20603)

  • Friedman MS, Oyserman SM & Hankenson KD 2009 Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2. J Biol Chem 284 1411714125. (https://pubmed.ncbi.nlm.nih.gov/19213727/)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Furusato B, Mohamed A, Uhlén M, et al. 2010 CXCR4 and cancer. Pathol Int 60 497505. (https://doi.org/10.1111/j.1440-1827.2010.02548.x)

  • Gaur T, Lengner CJ, Hovhannisyan H, et al. 2005 Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280 3313233140. (https://www.sciencedirect.com/science/article/pii/S0021925820790381)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gawrzak S, Rinaldi L, Gregorio S, et al. 2018 MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat Cel Biol 20 211221. (https://doi.org/10.1038/s41556-017-0021-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghajar CM, Peinado H, Mori H, et al. 2013 The perivascular niche regulates breast tumour dormancy. Nat Cel Biol 15 807817. (https://doi.org/10.1038/ncb2767)

  • Guise TA, Yin JJ & Mohammad KS 2003 Role of endothelin-1 in osteoblastic bone metastases. Cancer 97 (Supplement 3) 779784. (https://doi.org/10.1002/cncr.11129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guise TA, Mohammad KS, Clines G, et al. 2006 Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12 6213s6216s. (https://doi.org/10.1158/1078-0432.CCR-06-1007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harper KL, Sosa MS, Entenberg D, et al. 2016 Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540 588592. (https://doi.org/10.1038/nature20609)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harris SE, Bonewald LF, Harris MA, et al. 1994 Effects of transforming growth factor β on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 9 855863. (https://onlinelibrary.wiley.com/doi/10.1002/jbmr.5650090611)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harvey HA 1997 Issues concerning the role of chemotherapy and hormonal therapy of bone metastases from breast carcinoma. Cancer 80 (Supplement 8) 16461651. (https://doi.org/10.1002/(sici)1097-0142(19971015)80:8+<1646::aid-cncr14>3.3.co;2-m)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hayman AR 2008 Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41 218223. (https://doi.org/10.1080/08916930701694667)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hill TP, Später D, Taketo MM, et al. 2005 Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8 727738. (https://doi.org/10.1016/j.devcel.2005.02.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hong J-H, Hwang ES, McManus MT, et al. 2005 TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309 10741078. (https://doi.org/10.1126/science.1110955)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hosseini H, Obradović MMS, Hoffmann M, et al. 2016 Early dissemination seeds metastasis in breast cancer. Nature 540 552558. (https://doi.org/10.1038/nature20785)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu L, Chen W, Qian A, et al. 2024 Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 12 39. (https://doi.org/10.1038/s41413-024-00342-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang W, Yang S, Shao J, et al. 2007 Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12 30683092. (https://doi.org/10.2741/2296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hume DA 2006 The mononuclear phagocyte system. Curr Opin Immunol 18 4953. (https://doi.org/10.1016/j.coi.2005.11.008)

  • Iacobescu GL, Corlatescu A-D, Popa M, et al. 2024 Exploring the implications of Golgi apparatus dysfunction in bone diseases. Cureus 16 e56982. (https://doi.org/10.7759/cureus.56982)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iyer S & Adams DJ 2023 Bone and the unfolded protein response: in sickness and in health. Calcif Tissue Int 113 96109. (https://doi.org/10.1007/s00223-023-01096-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Izbicka E, Dunstan C, Esparza J, et al. 1996 Human amniotic tumor that induces new bone formation in vivo produces growth-regulatory activity in vitro for osteoblasts identified as an extended form of basic fibroblast growth factor. Cancer Res 56 633636.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiao S, Subudhi SK, Aparicio A, et al. 2019 Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179 11771190.e13. (https://doi.org/10.1016/j.cell.2019.10.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnson RW, Finger EC, Olcina MM, et al. 2016 Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cel Biol 18 10781089. (https://doi.org/10.1038/ncb3408)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kang S, Bennett CN, Gerin I, et al. 2007 Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J Biol Chem 282 1451514524. (https://doi.org/10.1074/jbc.m700030200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kenkre JS & Bassett J 2018 The bone remodelling cycle. Ann Clin Biochem 55 308327. (https://doi.org/10.1177/0004563218759371)

  • Khew-Goodall Y & Goodall GJ 2010 Myc-modulated miR-9 makes more metastases. Nat Cel Biol 12 209211. (https://doi.org/10.1038/ncb0310-209)

  • Kim J-H, Sim JH, Lee S, et al. 2017 Interleukin-7 induces osteoclast formation via STAT5, independent of receptor activator of NF-kappaB ligand. Front Immunol 8 1376. (https://doi.org/10.3389/fimmu.2017.01376)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kitaura H, Kimura K, Ishida M, et al. 2013 Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol 2013 18. (https://doi.org/10.1155/2013/181849)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kitaura H, Marahleh A, Ohori F, et al. 2020 Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci 21 5169. (https://doi.org/10.3390/ijms21145169)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klein-Nulend J & Bacabac RG 2012 Bone adaptation and regeneration – new developments. Int J Mod Phys Conf Ser 17 3443. (https://doi.org/10.1142/S201019451200791X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kobayashi A, Okuda H, Xing F, et al. 2011 Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208 26412655. (https://doi.org/10.1084/jem.20110840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Komori T 2010 Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339 189195. (https://doi.org/10.1007/s00441-009-0832-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lacey DL, Timms E, Tan HL, et al. 1998 Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93 165176. (https://doi.org/10.1016/s0092-8674(00)81569-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lawson MA, McDonald MM, Kovacic N, et al. 2015 Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6 8983. (https://doi.org/10.1038/ncomms9983)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lindemann F, Witte J, Schlimok G, et al. 1992 Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340 685689. (https://doi.org/10.1016/0140-6736(92)92230-d)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luzzi KJ, MacDonald IC, Schmidt EE, et al. 1998 Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153 865873. (https://doi.org/10.1016/S0002-9440(10)65628-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macedo F, Ladeira K, Pinho F, et al. 2017 Bone metastases: an overview. Oncol Rev 11 321. (https://doi.org/10.4081/oncol.2017.321)

  • Majidinia M, Sadeghpour A & Yousefi B 2018 The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 233 29372948. (https://doi.org/10.1002/jcp.26042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manolagas SC 2000 Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21 115137. (https://doi.org/10.1210/edrv.21.2.0395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marcelli M, Tilley WD, Wilson CM, et al. 1990 A single nucleotide substitution introduces a premature termination codon into the androgen receptor gene of a patient with receptor-negative androgen resistance. J Clin Invest 85 15221528. (https://doi.org/10.1172/JCI114599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maynard RL & Downes N 2019 Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research. Cambridge, MA, USA: Academic Press. (https://play.google.com/store/books/details?id=2kGHDwAAQBAJ)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meng F & Wu G 2012 The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev 31 455467. (https://doi.org/10.1007/s10555-012-9379-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mundy GR 2002 Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2 584593. (https://doi.org/10.1038/nrc867)

  • Nelson JB, Hedican SP, George DJ, et al. 1995 Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1 944949. (https://doi.org/10.1038/nm0995-944)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nguyen DX, Bos PD & Massagué J 2009 Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9 274284. (https://doi.org/10.1038/nrc2622)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Carrigan B, Wong MH, Willson ML, et al. 2017 Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 2018 CD003474. (https://doi.org/10.1002/14651858.CD003474.pub4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ochiai H, Okada S, Saito A, et al. 2012 Inhibition of insulin-like growth factor-1 (IGF-1) expression by prolonged transforming growth factor-β1 (TGF-β1) administration suppresses osteoblast differentiation. J Biol Chem 287 2265422661. (https://doi.org/10.1074/jbc.M111.279091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Otero K, Shinohara M, Zhao H, et al. 2012 TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol 188 26122621. (https://doi.org/10.4049/jimmunol.1102836)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paget S 1889 The distribution of secondary growths in cancer of the breast. Lancet 133 571573. (https://doi.org/10.1016/s0140-6736(00)49915-0)

  • Pittenger MF, Mackay AM, Beck SC, et al. 1999 Multilineage potential of adult human mesenchymal stem cells. Science 284 143147. (https://doi.org/10.1126/science.284.5411.143)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Powell GJ, Southby J, Danks JA, et al. 1991 Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res 51 30593061.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Price TT, Burness ML, Sivan A, et al. 2016 Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med 8 340ra73. (https://doi.org/10.1126/scitranslmed.aad4059)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qiu W, Chen L & Kassem M 2011 Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells. Biochem Biophys Res Commun 413 98104. (https://doi.org/10.1016/j.bbrc.2011.08.061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qiu Z-Y, Cui Y & Wang X-M 2019 Chapter 1 - natural bone tissue and its biomimetic. In Mineralized Collagen Bone Graft Substitutes: Woodhead Publishing Series in Biomaterials, pp 122. Eds X-M Wang, Z-Y Qiu & H Cui. Amsterdam, The Netherlands: Higher Education Press, Elsevier. (https://doi.org/10.1016/B978-0-08-102717-2.00001-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raggatt LJ, Wullschleger ME, Alexander KA, et al. 2014 Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol 184 31923204. (https://doi.org/10.1016/j.ajpath.2014.08.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reymond N, d’Água BB & Ridley AJ 2013 Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13 858870. (https://doi.org/10.1038/nrc3628)

  • Romero G, Sneddon WB, Yang Y, et al. 2010 Parathyroid hormone receptor directly interacts with dishevelled to regulate β-catenin signaling and osteoclastogenesis. J Biol Chem 285 1475614763. (https://doi.org/10.1074/jbc.m110.102970)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ronca R, Giacomini A, Di Salle E, et al. 2015 Long-pentraxin 3 derivative as a small-molecule FGF trap for cancer therapy. Cancer Cell 28 225239. (https://doi.org/10.1016/j.ccell.2015.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rummel K, Benson J & Roller L 2021 Prostate adenocarcinoma with osteolytic metastases: case report and review of the literature. Radiol Case Rep 16 35653568. (https://doi.org/10.1016/j.radcr.2021.08.056)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruscitti P, Cipriani P, Carubbi F, et al. 2015 The role of IL‐1β in the bone loss during rheumatic diseases. Mediators Inflamm 2015 782382. (https://doi.org/10.1155/2015/782382)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sceneay J, Smyth MJ & Möller A 2013 The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32 449464. (https://doi.org/10.1007/s10555-013-9420-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shiozawa Y, Pedersen EA, Havens AM, et al. 2011 Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121 12981312. (https://doi.org/10.1172/JCI43414)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Siddiqui JA & Partridge NC 2016 Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology 31 233245. (https://doi.org/10.1152/physiol.00061.2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sipkins DA, Wei X, Wu JW, et al. 2005 In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435 969973. (https://doi.org/10.1038/nature03703)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sugiyama T, Kohara H, Noda M, et al. 2006 Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25 977988. (https://doi.org/10.1016/j.immuni.2006.10.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun Y-X, Schneider A, Jung Y, et al. 2005 Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20 318329. (https://doi.org/10.1359/JBMR.041109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taichman RS, Patel LR, Bedenis R, et al. 2013 GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One 8 e61873. (https://doi.org/10.1371/journal.pone.0061873)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takada S 1994 Wnt-3a regulates somite and tailbud formation in the mouse embryo. Trends Genet 10 151. (https://doi.org/10.1016/0168-9525(94)90090-6)

  • Tani-Ishii N, Tsunoda A, Teranaka T, et al. 1999 Autocrine regulation of osteoclast formation and bone resorption by IL-1α and TNFα. J Dent Res 78 16171623. (https://doi.org/10.1177/00220345990780100601)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teitelbaum SL & Ross FP 2003 Genetic regulation of osteoclast development and function. Nat Rev Genet 4 638649. (https://doi.org/10.1038/nrg1122)

  • Trivedi T, Pagnotti GM, Guise TA, et al. 2021 The role of TGF-β in bone metastases. Biomolecules 11 1643. (https://doi.org/10.3390/biom11111643)

  • Tu X, Joeng KS, Nakayama KI, et al. 2007 Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation. Dev Cell 12 113127. (https://doi.org/10.1016/j.devcel.2006.11.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tulotta C, Lefley DV, Freeman K, et al. 2019 Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin Cancer Res 25 27692782. (https://doi.org/10.1158/1078-0432.CCR-18-2202)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Väänänen HK, Zhao H, Mulari M, et al. 2000 The cell biology of osteoclast function. J Cell Sci 113 377381. (https://doi.org/10.1242/jcs.113.3.377)

  • Verborgt O, Gibson GJ & Schaffler MB 2000 Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15 6067. (https://doi.org/10.1359/jbmr.2000.15.1.60)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vlashi R, Zhang X, Wu M, et al. 2023 Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 10 12911317. (https://doi.org/10.1016/j.gendis.2022.07.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vlassov AV, Magdaleno S, Setterquist R, et al. 2012 Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820 940948. (https://doi.org/10.1016/j.bbagen.2012.03.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang N, Docherty FE, Brown HK, et al. 2014 Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res 29 26882696. (https://doi.org/10.1002/jbmr.2300)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Tian L, Liu J, et al. 2018 The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell 34 823839.e7. (https://doi.org/10.1016/j.ccell.2018.10.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang M, Xia F, Wei Y, et al. 2020 Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 8 30. (https://doi.org/10.1038/s41413-020-00105-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei W, Zeve D, Suh JM, et al. 2011 Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol 31 47064719. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232928/)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Winslow MM, Pan M, Starbuck M, et al. 2006 Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 10 771782. (https://doi.org/10.1016/j.devcel.2006.04.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wong SK, Mohamad N-V, Giaze TR, et al. 2019 Prostate cancer and bone metastases: the underlying mechanisms. Int J Mol Sci 20 2587. (https://doi.org/10.3390/ijms20102587)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Y & Zhou BP 2010 TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102 639644. (https://doi.org/10.1038/sj.bjc.6605530)

  • Yang L, Li Q, Zhang J, et al. 2021 Wnt7a promotes the osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med 47 94. (https://doi.org/10.3892/ijmm.2021.4927)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yin JJ, Selander K, Chirgwin JM, et al. 1999 TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103 197206. (https://doi.org/10.1172/JCI3523)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoshitake F, Itoh S, Narita H, et al. 2008 Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-κB signaling pathways. J Biol Chem 283 1153511540. (https://doi.org/10.1074/jbc.M607999200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Y, Lin J, Shao J, et al. 2019 Aberrant activation of Wnt signaling pathway altered osteocyte mineralization. Bone 127 324333. (https://doi.org/10.1016/j.bone.2019.06.027)

    • PubMed
    • Search Google Scholar
    • Export Citation