This paper forms part of the themed collection RET@Thirty: Three Decades of Remarkable Progress. The guest editors for this collection were Tom Kurzawinski, Neil McDonald and Kate Newbold.
The discovery of RET mutations in multiple endocrine neoplasia type 2A (MEN2A) in 1993 ignited a revolution in our understanding of this versatile receptor. Since then, the influence of RET has expanded to encompass diverse organs, including the pituitary gland. This review explores the multifaceted role of RET in somatotrophs, focusing on two opposing pathways: proliferation versus differentiation and apoptosis. The binding of glial-derived neurotrophic factor (GDNF) to RET promotes pituitary cell survival and inhibits PIT1-dependent differentiation, while low levels of GDNF trigger differentiation via PIT1. Excessive PIT1, on the other hand, will lead to apoptosis through caspase-3 activation involving the adaptor protein AIP and CDKN2A-ARF/p53. Pathogenic mutations in AIP can disrupt this apoptotic pathway, contributing to somatotrophinoma or prolactinoma development. In this concise review, we highlight the potential of CDKN2A-ARF expression as a prognostic marker for therapy response and discuss the promise of novel RET tyrosine kinase inhibitors for aggressive somatotrophinomas.
Endocrine-Related Cancer is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 36 | 36 | 25 |
PDF Downloads | 58 | 58 | 44 |
Adams SE, Purkiss AG, Knowles PP, et al. 2021 A two-site flexible clamp mechanism for RET-GDNF-GFRalpha1 assembly reveals both conformational adaptation and strict geometric spacing. Structure 29 694–708 e697. (https://doi.org/10.1016/j.str.2020.12.012)
Aflorei ED, Klapholz B, Chen C, et al. 2018 In vivo bioassay to test the pathogenicity of missense human AIP variants. J Med Genet 55 522–529. (https://doi.org/10.1136/jmedgenet-2017-105191)
Airaksinen MS & Saarma M 2002 The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3 383–394. (https://doi.org/10.1038/nrn812)
Andoniadou CL, Matsushima D, Mousavy Gharavy S, et al. 2013 Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13 433–445. (https://doi.org/10.1016/j.stem.2013.07.004)
Barry S, Carlsen E, Marques P, et al. 2019 Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 38 5381–5395. (https://doi.org/10.1038/s41388-019-0779-5)
Beck KD, Valverde J, Alexi T, et al. 1995 Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373 339–341. (https://doi.org/10.1038/373339a0)
Beckers A, Aaltonen LA, Daly AF, et al. 2013 Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 34 239–277. (https://doi.org/10.1210/er.2012-1013)
Bizzi MF, Pinheiro SVB, Bolger GB, et al. 2018 Reduced protein expression of the phosphodiesterases PDE4A4 and PDE4A8 in AIP mutation positive somatotroph adenomas. Mol Cell Endocrinol 476 103–109. (https://doi.org/10.1016/j.mce.2018.04.014)
Bogner EM, Daly AF, Gulde S, et al. 2020 miR‐34a is upregulated in AIP mutated somatotropinomas and promotes octreotide resistance. Int J Cancer 147 3523–3538. (https://doi.org/10.1002/ijc.33268)
Bolger GB, Bizzi MF, Pinheiro SV, et al. 2016 cAMP-specific PDE4 phosphodiesterases and AIP in the pathogenesis of pituitary tumors. Endocr Relat Cancer 23 419–431. (https://doi.org/10.1530/erc-15-0205)
Bordeaux MC, Forcet C, Granger L, et al. 2000 The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J 19 4056–4063. (https://doi.org/10.1093/emboj/19.15.4056)
Brisset M, Grandin M, Bernet A, et al. 2021 Dependence receptors: new targets for cancer therapy. EMBO Mol Med 13 e14495. (https://doi.org/10.15252/emmm.202114495)
Canibano C, Rodriguez NL, Saez C, et al. 2007 The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO J 26 2015–2028. (https://doi.org/10.1038/sj.emboj.7601636)
Castinetti F & Eng C 2024 Genotype/phenotype correlations in multiple endocrine neoplasia type 2. Endocr Relat Cancer 31 e240139. (https://doi.org/10.1530/erc-24-0139)
Chahal HS, Stals K, Unterlander M, et al. 2011 AIP mutation in pituitary adenomas in the 18th century and today. N Engl J Med 364 43–50. (https://doi.org/10.1056/nejmoa1008020)
Chahal HS, Trivellin G, Leontiou CA, et al. 2012 Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway. J Clin Endocrinol Metab 97 E1411–E1420. (https://doi.org/10.1210/jc.2012-1111)
Chasseloup F, Regazzo D, Tosca L, et al. 2024 KDM1A genotyping and expression in 146 sporadic somatotroph pituitary adenomas. Eur J Endocrinol 190 173–181. (https://doi.org/10.1093/ejendo/lvae013)
Chatterjee R, Ramos E, Hoffman M, et al. 2012 Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 131 1725–1738. (https://doi.org/10.1007/s00439-012-1181-3)
Chen J, Gremeaux L, Fu Q, et al. 2009 Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27 1182–1195. (https://doi.org/10.1002/stem.51)
Chen B, Liu P, Hujber EJ, et al. 2017 AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor. Nat Commun 8 1380. (https://doi.org/10.1038/s41467-017-01704-z)
Chenlo M, Rodriguez-Gomez IA, Serramito R, et al. 2019 Unmasking a new prognostic marker and therapeutic target from the GDNF-RET/PIT1/p14ARF/p53 pathway in acromegaly. EBioMedicine 43 537–552. (https://doi.org/10.1016/j.ebiom.2019.04.007)
Chik CL, van Landeghem FKH, Easaw JC, et al. 2021 Aggressive childhood-onset papillary craniopharyngioma managed with vemurafenib, a BRAF inhibitor. J Endocr Soc 5 bvab043. (https://doi.org/10.1210/jendso/bvab043)
Coll AP, Chen M, Taskar P, et al. 2020 GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578 444–448. (https://doi.org/10.1038/s41586-019-1911-y)
Daly AF, Vanbellinghen JF, Khoo SK, et al. 2007 Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 92 1891–1896. (https://doi.org/10.1210/jc.2006-2513)
De Vita G, Melillo RM, Carlomagno F, et al. 2000 Tyrosine 1062 of RET-MEN2A mediates activation of Akt (protein kinase B) and mitogen-activated protein kinase pathways leading to PC12 cell survival. Cancer Res 60 3727–3731.
Denes J, Kasuki L, Trivellin G, et al. 2015 Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by miR-34a in sporadic somatotropinomas. PLoS One 10 e0117107. (https://doi.org/10.1371/journal.pone.0117107)
Diaz-Rodriguez E, Garcia-Lavandeira M, Perez-Romero S, et al. 2012 Direct promoter induction of p19Arf by Pit-1 explains the dependence receptor RET/Pit-1/p53-induced apoptosis in the pituitary somatotroph cells. Oncogene 31 2824–2835. (https://doi.org/10.1038/onc.2011.458)
Diaz-Rodriguez E, Garcia-Rendueles AR, Ibanez-Costa A, et al. 2014 Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF. Endocrinology 155 4329–4340. (https://doi.org/10.1210/en.2014-1034)
Donis-Keller H, Dou S, Chi D, et al. 1993 Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2 851–856. (https://doi.org/10.1093/hmg/2.7.851)
Dottermusch M, Ryba A, Ricklefs FL, et al. 2024 Pituitary neuroendocrine tumors with PIT1/SF1 co-expression show distinct clinicopathological and molecular features. Acta Neuropathol 147 16. (https://doi.org/10.1007/s00401-024-02686-1)
Durbec P, Marcos-Gutierrez CV, Kilkenny C, et al. 1996 GDNF signalling through the Ret receptor tyrosine kinase. Nature 381 789–793. (https://doi.org/10.1038/381789a0)
Dutta P, Reddy KS, Rai A, et al. 2019 Surgery, octreotide, temozolomide, bevacizumab, radiotherapy, and pegvisomant treatment of an AIP mutation–positive child. J Clin Endocrinol Metab 104 3539–3544. (https://doi.org/10.1210/jc.2019-00432)
Edery P, Lyonnet S, Mulligan LM, et al. 1994 Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature 367 378–380. (https://doi.org/10.1038/367378a0)
Emmerson PJ, Wang F, Du Y, et al. 2017 The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med 23 1215–1219. (https://doi.org/10.1038/nm.4393)
Fauquier T, Rizzoti K, Dattani M, et al. 2008 SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 105 2907–2912. (https://doi.org/10.1073/pnas.0707886105)
Fisher S, Grice EA, Vinton RM, et al. 2006 Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312 276–279. (https://doi.org/10.1126/science.1124070)
Formosa R & Vassallo J 2017 Aryl hydrocarbon receptor-interacting protein (AIP) N-terminus gene mutations identified in pituitary adenoma patients alter protein stability and function. Horm Cancer 8 174–184. (https://doi.org/10.1007/s12672-017-0288-3)
Garcia-Lavandeira M, Quereda V, Flores I, et al. 2009 A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 4 e4815. (https://doi.org/10.1371/journal.pone.0004815)
Garcia-Lavandeira M, Diaz-Rodriguez E, Garcia-Rendueles ME, et al. 2010 Functional role of the RET dependence receptor, GFRa co-receptors and ligands in the pituitary. Front Horm Res 38 127–138. (https://doi.org/10.1159/000318502)
Garcia-Lavandeira M, Saez C, Diaz-Rodriguez E, et al. 2012 Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab 97 E80–E87. (https://doi.org/10.1210/jc.2011-2187)
Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, et al. 2015 Pituitary cell turnover: from adult stem cell recruitment through differentiation to death. Neuroendocrinology 101 175–192. (https://doi.org/10.1159/000375502)
Garcia-Rendueles AR, Chenlo M, Oroz-Gonjar F, et al. 2021 RET signalling provides tumorigenic mechanism and tissue specificity for AIP-related somatotrophinomas. Oncogene 40 6354–6368. (https://doi.org/10.1038/s41388-021-02009-8)
Gillam MP, Ku CR, Lee YJ, et al. 2017 Somatotroph-specific Aip-deficient mice display pretumorigenic alterations in cell-cycle signaling. J Endocr Soc 1 78–95. (https://doi.org/10.1210/js.2016-1004)
Giustina A, Biermasz N, Casanueva FF, et al. 2024 Consensus on criteria for acromegaly diagnosis and remission. Pituitary 27 7–22. (https://doi.org/10.1007/s11102-023-01360-1)
Gremeaux L, Fu Q, Chen J, et al. 2012 Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cell Dev 21 801–813. (https://doi.org/10.1089/scd.2011.0496)
Guillou A, Romano N, Bonnefont X, et al. 2011 Modulation of the tyrosine kinase receptor Ret/glial cell-derived neurotrophic factor (GDNF) signaling: a new player in reproduction induced anterior pituitary plasticity? Endocrinology 152 515–525. (https://doi.org/10.1210/en.2010-0673)
Hage M, Viengchareun S, Brunet E, et al. 2018 Genomic alterations and complex subclonal architecture in sporadic GH-secreting pituitary adenomas. J Clin Endocrinol Metab 103 1929–1939. (https://doi.org/10.1210/jc.2017-02287)
Hernandez-Ramirez LC, Martucci F, Morgan RM, et al. 2016 Rapid proteasomal degradation of mutant proteins is the primary mechanism leading to tumorigenesis in patients with missense AIP mutations. J Clin Endocrinol Metab 101 3144–3154. (https://doi.org/10.1210/jc.2016-1307)
Hernandez-Ramirez LC, Morgan RML, Barry S, et al. 2018 Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland. Oncotarget 9 9177–9198. (https://doi.org/10.18632/oncotarget.24183)
Hofstra RM, Landsvater RM, Ceccherini I, et al. 1994 A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367 375–376. (https://doi.org/10.1038/367375a0)
Hou H, Chan C, Yuki KE, et al. 2022 Postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary gland. Biol Sex Differ 13 57. (https://doi.org/10.1186/s13293-022-00467-7)
Hsu JY, Crawley S, Chen M, et al. 2017 Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550 255–259. (https://doi.org/10.1038/nature24042)
Ibanez CF, Paratcha G & Ledda F 2020 RET-independent signaling by GDNF ligands and GFRα receptors. Cell Tissue Res 382 71–82. (https://doi.org/10.1007/s00441-020-03261-2)
Igreja S, Chahal HS, King P, et al. 2010 Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum Mutat 31 950–960. (https://doi.org/10.1002/humu.21292)
Japón MA, Urbano AG, Sáez C, et al. 2002 Glial-derived neurotropic factor and RET gene expression in normal human anterior pituitary cell types and in pituitary tumors. J Clin Endocrinol Metab 87 1879–1884. (https://doi.org/10.1210/jcem.87.4.8383)
Jasmin M, Ahn EH, Voutilainen MH, et al. 2021 Netrin-1 and its receptor DCC modulate survival and death of dopamine neurons and Parkinson's disease features. EMBO J 40 e105537. (https://doi.org/10.15252/embj.2020105537)
Jeanpierre C, Mace G, Parisot M, et al. 2011 RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet 48 497–504. (https://doi.org/10.1136/jmg.2010.088526)
Jing S, Wen D, Yu Y, et al. 1996 GDNF–Induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85 1113–1124. (https://doi.org/10.1016/s0092-8674(00)81311-2)
Kang BH, Xia F, Pop R, et al. 2011 Developmental control of apoptosis by the immunophilin aryl hydrocarbon receptor-interacting protein (AIP) involves mitochondrial import of the survivin protein. J Biol Chem 286 16758–16767. (https://doi.org/10.1074/jbc.m110.210120)
Kawamoto Y, Takeda K, Okuno Y, et al. 2004 Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem 279 14213–14224. (https://doi.org/10.1074/jbc.m312600200)
Khaddour K, Chicoine MR, Huang J, et al. 2020 Successful use of BRAF/MEK inhibitors as a neoadjuvant approach in the definitive treatment of papillary craniopharyngioma. J Natl Compr Canc Netw 18 1590–1595. (https://doi.org/10.6004/jnccn.2020.7624)
Kopanos C, Tsiolkas V, Kouris A, et al. 2019 VarSome: the human genomic variant search engine. Bioinformatics 35 1978–1980. (https://doi.org/10.1093/bioinformatics/bty897)
Laporte E, Hermans F, De Vriendt S, et al. 2022 Decoding the activated stem cell phenotype of the neonatally maturing pituitary. Elife 11 e75742. (https://doi.org/10.7554/elife.75742)
Lecoq AL, Zizzari P, Hage M, et al. 2016 Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice. J Endocrinol 231 59–69. (https://doi.org/10.1530/joe-16-0190)
Leontiou CA, Gueorguiev M, Van Der Spuy J, et al. 2008 The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 93 2390–2401. (https://doi.org/10.1210/jc.2007-2611)
Leppanen VM, Bespalov MM, Runeberg-Roos P, et al. 2004 The structure of GFRα1 domain 3 reveals new insights into GDNF binding and RET activation. EMBO J 23 1452–1462. (https://doi.org/10.1038/sj.emboj.7600174)
Lin LF, Doherty DH, Lile JD, et al. 1993 GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260 1130–1132. (https://doi.org/10.1126/science.8493557)
Lin BC, Sullivan R, Lee Y, et al. 2007 Deletion of the aryl hydrocarbon receptor-associated protein 9 leads to cardiac malformation and embryonic lethality. J Biol Chem 282 35924–35932. (https://doi.org/10.1074/jbc.m705471200)
Losa M, Mazza E, Pedone E, et al. 2024 Targeted therapy in BRAF mutated aggressive papillary craniopharyngioma: a case report and overview of the literature. J Endocrinol Invest 47 2835–2842. (https://doi.org/10.1007/s40618-024-02382-7)
Luo Y, Ceccherini I, Pasini B, et al. 1993 Close linkage with the RET protooncogene and boundaries of deletion mutations in autosomal dominant Hirschsprung disease. Hum Mol Genet 2 1803–1808. (https://doi.org/10.1093/hmg/2.11.1803)
Mistry A, Solomou A, Vignola ML, et al. 2019 Investigating the role of AIP in pituitary tumourigenesis. Endocr Abstr 65 OC2.2. (https://doi.org/10.1530/endoabs.65.oc2.2)
Mullican SE, Lin-Schmidt X, Chin CN, et al. 2017 GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 23 1150–1157. (https://doi.org/10.1038/nm.4392)
Mulligan LM, Kwok JB, Healey CS, et al. 1993 Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363 458–460. (https://doi.org/10.1038/363458a0)
Paratcha G, Ledda F & Ibanez CF 2003 The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113 867–879. (https://doi.org/10.1016/s0092-8674(03)00435-5)
Park GH, Kang YK, Paek SM, et al. 2023 Caspase cleavage of receptor tyrosine kinases in the dependence receptor family. Biomolecules Ther 31 359–369. (https://doi.org/10.4062/biomolther.2022.133)
Plaza-Menacho I, Barnouin K, Barry R, et al. 2016 RET functions as a dual-specificity kinase that requires allosteric inputs from juxtamembrane elements. Cell Rep 17 3319–3332. (https://doi.org/10.1016/j.celrep.2016.11.061)
Ponder B & Kurzawinski TR 2025 RET@Thirty: the story behind identification of RET mutation as the cause of MEN2 and what it meant to clinical practice. Endocr Relat Cancer 32 e240226. (https://doi.org/10.1530/ERC-24-0226)
Pradilla Dieste A, Chenlo M, Perez-Romero S, et al. 2020 GFRα 1-2-3-4 co-receptors for RET are co-expressed in pituitary stem cells but individually retained in some adenopituitary cells. Front Endocrinol 11 631. (https://doi.org/10.3389/fendo.2020.00631)
Raitila A, Lehtonen HJ, Arola J, et al. 2010 Mice with inactivation of aryl hydrocarbon receptor-interacting protein (Aip) display complete penetrance of pituitary adenomas with aberrant ARNT expression. Am J Pathol 177 1969–1976. (https://doi.org/10.2353/ajpath.2010.100138)
Rao M, Bhattacharjee M, Shepard S, et al. 2019 Newly diagnosed papillary craniopharyngioma with BRAF V600E mutation treated with single-agent selective BRAF inhibitor dabrafenib: a case report. Oncotarget 10 6038–6042. (https://doi.org/10.18632/oncotarget.27203)
Rehm HL, Alaimo JT, Aradhya S, et al. 2023 The landscape of reported VUS in multi-gene panel and genomic testing: time for a change. Genet Med 25 100947. (https://doi.org/10.1016/j.gim.2023.100947)
Rizzoti K, Akiyama H & Lovell-Badge R 2013 Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13 419–432. (https://doi.org/10.1016/j.stem.2013.07.006)
Romeo G, Ronchetto P, Luo Y, et al. 1994 Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 367 377–378. (https://doi.org/10.1038/367377a0)
Ruf-Zamojski F, Zhang Z, Zamojski M, et al. 2021 Single nucleus multi-omics regulatory landscape of the murine pituitary. Nat Commun 12 2677. (https://doi.org/10.1038/s41467-021-22859-w)
Rymuza J, Kober P, Maksymowicz M, et al. 2024 High level of aneuploidy and recurrent loss of chromosome 11 as relevant features of somatotroph pituitary tumors. J Transl Med 22 994. (https://doi.org/10.1186/s12967-024-05736-0)
Salvatore D, Barone MV, Salvatore G, et al. 2000 Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab 85 3898–3907. (https://doi.org/10.1210/jcem.85.10.6882)
Sanchez MP, Silos-Santiago I, Frisen J, et al. 1996 Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382 70–73. (https://doi.org/10.1038/382070a0)
Shen AL, Moran SM, Glover EN, et al. 2024 Familial isolated pituitary adenoma is independent of Ahr genotype in a novel mouse model of disease. Heliyon 10 e28231. (https://doi.org/10.1016/j.heliyon.2024.e28231)
Skinner MA, Safford SD, Reeves JG, et al. 2008 Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82 344–351. (https://doi.org/10.1016/j.ajhg.2007.10.008)
Soares BS, Eguchi K & Frohman LA 2005 Tumor deletion mapping on chromosome 11q13 in eight families with isolated familial somatotropinoma and in 15 sporadic somatotropinomas. J Clin Endocrinol Metab 90 6580–6587. (https://doi.org/10.1210/jc.2005-1478)
Tomac A, Lindqvist E, Lin LF, et al. 1995 Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373 335–339. (https://doi.org/10.1038/373335a0)
Treanor JJ, Goodman L, De Sauvage F, et al. 1996 Characterization of a multicomponent receptor for GDNF. Nature 382 80–83. (https://doi.org/10.1038/382080a0)
Trupp M, Arenas E, Fainzilber M, et al. 1996 Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381 785–789. (https://doi.org/10.1038/381785a0)
Tuominen I, Heliovaara E, Raitila A, et al. 2015 AIP inactivation leads to pituitary tumorigenesis through defective Gαi-cAMP signaling. Oncogene 34 1174–1184. (https://doi.org/10.1038/onc.2014.50)
Urbano AG, Suarez-Penaranda JM, Dieguez C, et al. 2000 GDNF and RET-gene expression in anterior pituitary-cell types. Endocrinology 141 1893–1896. (https://doi.org/10.1210/en.141.5.1893)
Vargiolu M, Fusco D, Kurelac I, et al. 2009 The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. J Clin Endocrinol Metab 94 2571–2578. (https://doi.org/10.1210/jc.2008-1980)
Vierimaa O, Georgitsi M, Lehtonen R, et al. 2006 Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312 1228–1230. (https://doi.org/10.1126/science.1126100)
Villa C, Lagonigro MS, Magri F, et al. 2011 Hyperplasia-adenoma sequence in pituitary tumorigenesis related to aryl hydrocarbon receptor interacting protein gene mutation. Endocr Relat Cancer 18 347–356. (https://doi.org/10.1530/erc-11-0059)
Walker TJ & Mulligan LM 2024 Cellular mechanisms of RET receptor dysfunction in multiple endocrine neoplasia 2. Endocr Relat Cancer 32 e240187. (https://doi.org/10.1530/erc-24-0187)
Wang X, Haworth O, Abdi-Aziz N, et al. 2023 Aryl hydrocarbon receptor-interacting protein (aip) loss causes failure-to-thrive and cardiac defects in zebrafish. Endocr Abstr 94 OC3.6. (https://doi.org/10.1530/endoabs.94.oc3.6)
Xekouki P, Mastroyiannis SA, Avgeropoulos D, et al. 2013 Familial pituitary apoplexy as the only presentation of a novel AIP mutation. Endocr Relat Cancer 20 L11–L14. (https://doi.org/10.1530/erc-13-0218)
Yang L, Chang CC, Sun Z, et al. 2017 GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med 23 1158–1166. (https://doi.org/10.1038/nm.4394)
Zhang Z, Zamojski M, Smith GR, et al. 2022 Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Rep 38 110467. (https://doi.org/10.1016/j.celrep.2022.110467)
Online ISSN: 1479-6821
Print ISSN: 1351-0088
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519