Systems-level liquid biopsy in advanced prostate cancer

in Endocrine-Related Cancer
Authors:
Jacqueline Lyman Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, USA

Search for other papers by Jacqueline Lyman in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7287-9008
and
Scott M Dehm Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
Department of Urology, University of Minnesota, Minneapolis, Minnesota, USA

Search for other papers by Scott M Dehm in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7827-5579

Correspondence should be addressed to S M Dehm: dehm@umn.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Treatment for castration-resistant prostate cancer (CRPC) primarily involves suppression of androgen receptor (AR) activity using androgen receptor signaling inhibitors (ARSIs). While ARSIs have extended patient survival, resistance inevitably develops. Mechanisms of resistance include genomic aberrations at the AR locus that reactivate AR signaling or lineage plasticity that drives emergence of AR-independent phenotypes. Given the diverse mechanisms of ARSI resistance in CRPC, there is a need for more effective monitoring strategies that detect signs of resistance to inform prognosis and guide use of alternative therapies. Liquid biopsy is a blood test that has emerged as a powerful, minimally invasive tool for investigating advanced cancer. In CRPC, liquid biopsy has been shown to reflect genomic and transcriptomic features in tumor tissue and has been utilized to detect an array of resistance signatures. Liquid biopsy is uninhibited by spatial restrictions and allows for longitudinal monitoring of disease progression. However, current clinical liquid biopsy tests provide limited actionable information. This review highlights recent advancements to the understanding of mechanisms driving treatment resistance in CRPC through research-grade liquid biopsy assays. We explore novel methods of disease characterization developed using liquid biopsy and emphasize the clinical potential of a multi-omics molecular profiling approach to comprehensively detect emerging therapeutic resistance. Routine assessment of therapy resistance using a liquid biopsy assay has the potential to enhance prognostication and improve outcomes of men with CRPC.

 

  • Collapse
  • Expand
  • Abida W, Cheng ML, Armenia J, et al. 2019a Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 5 471478. (https://doi.org/10.1001/jamaoncol.2018.5801)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abida W, Cyrta J, Heller G, et al. 2019b Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 116 1142811436. (https://doi.org/10.1073/pnas.1902651116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abida W, Campbell D, Patnaik A, et al. 2020 Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin Cancer Res 26 24872496. (https://doi.org/10.1158/1078-0432.CCR-20-0394)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adalsteinsson VA, Ha G, Freeman SS, et al. 2017 Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun 8 1324. (https://doi.org/10.1038/s41467-017-00965-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aggarwal R, Huang J, Alumkal JJ, et al. 2018 Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol 36 24922503. (https://doi.org/10.1200/JCO.2017.77.6880)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Annala M, Vandekerkhove G, Khalaf D, et al. 2018 Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 8 444457. (https://doi.org/10.1158/2159-8290.CD-17-0937)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Annala M, Taavitsainen S, Khalaf DJ, et al. 2021 Evolution of castration-resistant prostate cancer in ctDNA during sequential androgen receptor pathway inhibition. Clin Cancer Res 27 46104623. (https://doi.org/10.1158/1078-0432.CCR-21-1625)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antonarakis ES, Lu C, Wang H, et al. 2014 AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371 10281038. (https://doi.org/10.1056/NEJMoa1315815)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antonarakis ES, Lu C, Luber B, et al. 2015 Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 1 582591. (https://doi.org/10.1001/jamaoncol.2015.1341)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antonarakis ES, Lu C, Luber B, et al. 2017 Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J Clin Oncol 35 21492156. (https://doi.org/10.1200/JCO.2016.70.1961)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Armstrong AJ, Halabi S, Luo J, et al. 2019 Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol 37 11201129. (https://doi.org/10.1200/JCO.18.01731)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Armstrong AJ, Luo J, Nanus DM, et al. 2020 Prospective multicenter study of circulating tumor cell AR-V7 and taxane versus hormonal treatment outcomes in metastatic castration-resistant prostate cancer. JCO Precis Oncol 4 12851301. (https://doi.org/10.1200/PO.20.00200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Azad AA, Volik SV, Wyatt AW, et al. 2015 Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21 23152324. (https://doi.org/10.1158/1078-0432.CCR-14-2666)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beltran H & Demichelis F 2021 Therapy considerations in neuroendocrine prostate cancer: what next? Endocr Relat Cancer 28 T67T78. (https://doi.org/10.1530/ERC-21-0140)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beltran H, Rickman DS, Park K, et al. 2011 Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 1 487495. (https://doi.org/10.1158/2159-8290.CD-11-0130)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beltran H, Prandi D, Mosquera JM, et al. 2016 Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22 298305. (https://doi.org/10.1038/nm.4045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beltran H, Hruszkewycz A, Scher HI, et al. 2019 The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res 25 69166924. (https://doi.org/10.1158/1078-0432.CCR-19-1423)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beltran H, Romanel A, Conteduca V, et al. 2020 Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J Clin Invest 130 16531668. (https://doi.org/10.1172/JCI131041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berchuck JE, Baca SC, McClure HM, et al. 2022 Detecting neuroendocrine prostate cancer through tissue-informed cell-free DNA methylation analysis. Clin Cancer Res 28 928938. (https://doi.org/10.1158/1078-0432.CCR-21-3762)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bluemn EG, Coleman IM, Lucas JM, et al. 2017 Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32 474489.e6. (https://doi.org/10.1016/j.ccell.2017.09.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonfil RD & Al-Eyd G 2023 Evolving insights in blood-based liquid biopsies for prostate cancer interrogation. Oncoscience 10 6980. (https://doi.org/10.18632/oncoscience.592)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brighi N, Conteduca V, Gurioli G, et al. 2023 Longitudinal assessment of plasma androgen receptor copy number predicts overall survival in subsequent treatment lines in castration-resistant prostate cancer: analysis from a prospective trial. ESMO Open 8 102036. (https://doi.org/10.1016/j.esmoop.2023.102036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carreira S, Romanel A, Goodall J, et al. 2014 Tumor clone dynamics in lethal prostate cancer. Sci Transl Med 6 254ra125. (https://doi.org/10.1126/scitranslmed.3009448)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casanova-Salas I, Aguilar D, Cordoba-Terreros S, et al. 2024 Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 42 13011312.e7. (https://doi.org/10.1016/j.ccell.2024.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castro E, Romero-Laorden N, Del Pozo A, et al. 2019 PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 37 490503. (https://doi.org/10.1200/JCO.18.00358)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chauhan PS, Alahi I, Sinha S, et al. 2024 Genomic and epigenomic analysis of plasma cell-free DNA identifies stemness features associated with worse survival in lethal prostate cancer. Clin Cancer Res 31 OF1-OF13. (https://doi.org/10.1158/1078-0432.CCR-24-1658)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen CD, Welsbie DS, Tran C, et al. 2004 Molecular determinants of resistance to antiandrogen therapy. Nat Med 10 3339. (https://doi.org/10.1038/nm972)

  • Cheng S, Nguyen ET, Pagano I, et al. 2022 Genomic landscape of circulating-tumor DNA in a diverse cohort of metastatic breast cancer patients. Oncol Res Treat 46 2632. (https://doi.org/10.1159/000528578)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen JD, Li L, Wang Y, et al. 2018 Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359 926930. (https://doi.org/10.1126/science.aar3247)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Conteduca V, Wetterskog D, Sharabiani MTA, et al. 2017 Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 28 15081516. (https://doi.org/10.1093/annonc/mdx155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Conteduca V, Castro E, Wetterskog D, et al. 2019 Plasma AR status and cabazitaxel in heavily treated metastatic castration-resistant prostate cancer. Eur J Cancer 116 158168. (https://doi.org/10.1016/j.ejca.2019.05.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Conteduca V, Ku S-Y, Fernandez L, et al. 2021 Circulating tumor cell heterogeneity in neuroendocrine prostate cancer by single cell copy number analysis. NPJ Precis Oncol 5 76. (https://doi.org/10.1038/s41698-021-00211-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooper CS, Eeles R, Wedge DC, et al. 2015 Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 47 367372. (https://doi.org/10.1038/ng.3221)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dang HX, Chauhan PS, Ellis H, et al. 2020 Cell-free DNA alterations in the AR enhancer and locus predict resistance to AR-directed therapy in patients with metastatic prostate cancer. JCO Precis Oncol 4 680713. (https://doi.org/10.1200/PO.20.00047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daniel M, Knutson TP, Sperger JM, et al. 2021 AR gene rearrangement analysis in liquid biopsies reveals heterogeneity in lethal prostate cancer. Endocr Relat Cancer 28 645655. (https://doi.org/10.1530/ERC-21-0157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis JT, Ghosh TM, Mazumder S, et al. 2023 Extended exposure topotecan significantly improves long-term drug sensitivity by decreasing malignant cell heterogeneity and by preventing epithelial–mesenchymal transition. Int J Mol Sci 24 8490. (https://doi.org/10.3390/ijms24108490)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Laere B, van Dam P-J, Whitington T, et al. 2017 Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns. Eur Urol 72 192200. (https://doi.org/10.1016/j.eururo.2017.01.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Laere B, Oeyen S, Mayrhofer M, et al. 2019 TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin Cancer Res 25 17661773. (https://doi.org/10.1158/1078-0432.CCR-18-1943)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sarkar N, Patton RD, Doebley A-L, et al. 2023 Nucleosome patterns in circulating tumor DNA reveal transcriptional regulation of advanced prostate cancer phenotypes. Cancer Discov 13 632653. (https://doi.org/10.1158/2159-8290.CD-22-0692)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dehm SM, Schmidt LJ, Heemers HV, et al. 2008 Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68 54695477. (https://doi.org/10.1158/0008-5472.CAN-08-0594)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Del Re M, Biasco E, Crucitta S, et al. 2017 The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 71 680687. (https://doi.org/10.1016/j.eururo.2016.08.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Derderian S, Vesval Q, Wissing MD, et al. 2022 Liquid biopsy‐based targeted gene screening highlights tumor cell subtypes in patients with advanced prostate cancer. Clin Transl Sci 15 25972612. (https://doi.org/10.1111/cts.13372)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deshpande V, Luebeck J, Nguyen N-PD, et al. 2019 Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun 10 392. (https://doi.org/10.1038/s41467-018-08200-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diehl F, Schmidt K, Choti MA, et al. 2008 Circulating mutant DNA to assess tumor dynamics. Nat Med 14 985990. (https://doi.org/10.1038/nm.1789)

  • Eisenberger M, Hardy-Bessard A-C, Kim CS, et al. 2017 Phase III study comparing a reduced dose of cabazitaxel (20 mg/m2) and the currently approved dose (25 mg/m2) in postdocetaxel patients with metastatic castration-resistant prostate cancer—PROSELICA. J Clin Oncol 35 31983206. (https://doi.org/10.1200/JCO.2016.72.1076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fonseca NM, Maurice-Dror C, Herberts C, et al. 2024 Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 15 1828. (https://doi.org/10.1038/s41467-024-45475-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foroni C, Zarovni N, Bianciardi L, et al. 2020 When less is more: specific capture and analysis of tumor exosomes in plasma increases the sensitivity of liquid biopsy for comprehensive detection of multiple androgen receptor phenotypes in advanced prostate cancer patients. Biomedicines 8 131. (https://doi.org/10.3390/biomedicines8050131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franceschini GM, Quaini O, Mizuno K, et al. 2024 Noninvasive detection of neuroendocrine prostate cancer through targeted cell-free DNA methylation. Cancer Discov 14 424445. (https://doi.org/10.1158/2159-8290.CD-23-0754)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gingrich JR, Barrios RJ, Morton RA, et al. 1996 Metastatic prostate cancer in a transgenic mouse. Cancer Res 56 40964102.

  • Grasso CS, Wu Y-M, Robinson DR, et al. 2012 The mutational landscape of lethal castration-resistant prostate cancer. Nature 487 239243. (https://doi.org/10.1038/nature11125)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gundem G, Van Loo P, Kremeyer B, et al. 2015 The evolutionary history of lethal metastatic prostate cancer. Nature 520 353357. (https://doi.org/10.1038/nature14347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo Z, Yang X, Sun F, et al. 2009 A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69 23052313. (https://doi.org/10.1158/0008-5472.CAN-08-3795)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gurioli G, Conteduca V, Lolli C, et al. 2020 Plasma AR copy number changes and outcome to abiraterone and enzalutamide. Front Oncol 10 567809. (https://doi.org/10.3389/fonc.2020.567809)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gurioli G, Conteduca V, Brighi N, et al. 2022 Circulating tumor cell gene expression and plasma AR gene copy number as biomarkers for castration-resistant prostate cancer patients treated with cabazitaxel. BMC Med 20 48. (https://doi.org/10.1186/s12916-022-02244-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Helzer KT, Sharifi MN, Sperger JM, et al. 2023 Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann Oncol 34 813825. (https://doi.org/10.1016/j.annonc.2023.06.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Henzler C, Li Y, Yang R, et al. 2016 Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat Commun 7 13668. (https://doi.org/10.1038/ncomms13668)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herberts C, Annala M, Sipola J, et al. 2022 Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer. Nature 608 199208. (https://doi.org/10.1038/s41586-022-04975-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hodara E, Morrison G, Cunha A, et al. 2019 Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight 4 e125529. (https://doi.org/10.1172/jci.insight.125529)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hovelson DH, Liu C-J, Wang Y, et al. 2017 Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy. Oncotarget 8 8984889866. (https://doi.org/10.18632/oncotarget.21163)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu R, Lu C, Mostaghel EA, et al. 2012 Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 72 34573462. (https://doi.org/10.1158/0008-5472.CAN-11-3892)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ionescu F, Zhang J & Wang L 2022 Clinical applications of liquid biopsy in prostate cancer: from screening to predictive biomarker. Cancers 14 1728. (https://doi.org/10.3390/cancers14071728)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ivanov M, Baranova A, Butler T, et al. 2015 Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation. BMC Genom 16 S1. (https://doi.org/10.1186/1471-2164-16-S13-S1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jayaram A, Wingate A, Wetterskog D, et al. 2021 Plasma tumor gene conversions after one cycle abiraterone acetate for metastatic castration-resistant prostate cancer: a biomarker analysis of a multicenter international trial. Ann Oncol 32 726735. (https://doi.org/10.1016/j.annonc.2021.03.196)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kohli M, Tan W, Zheng T, et al. 2020 Clinical and genomic insights into circulating tumor DNA-based alterations across the spectrum of metastatic hormone-sensitive and castrate-resistant prostate cancer. EBioMedicine 54 102728. (https://doi.org/10.1016/j.ebiom.2020.102728)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ku SY, Rosario S, Wang Y, et al. 2017 Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355 7883. (https://doi.org/10.1126/science.aah4199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar P, Dillon LW, Shibata Y, et al. 2017 Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation. Mol Cancer Res 15 11971205. (https://doi.org/10.1158/1541-7786.MCR-17-0095)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lallous N, Volik SV, Awrey S, et al. 2016 Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17 10. (https://doi.org/10.1186/s13059-015-0864-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ledet EM, Lilly MB, Sonpavde G, et al. 2020 Comprehensive analysis of AR alterations in circulating tumor DNA from patients with advanced prostate cancer. Oncologist 25 327333. (https://doi.org/10.1634/theoncologist.2019-0115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leversha MA, Han J, Asgari Z, et al. 2009 Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res 15 20912097. (https://doi.org/10.1158/1078-0432.CCR-08-2036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Alsagabi M, Fan D, et al. 2011 Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res 71 21082117. (https://doi.org/10.1158/0008-5472.CAN-10-1998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Hwang TH, Oseth LA, et al. 2012 AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 31 47594767. (https://doi.org/10.1038/onc.2011.637)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Chan SC, Brand LJ, et al. 2013 Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 73 483489. (https://doi.org/10.1158/0008-5472.CAN-12-3630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Yang R, Henzler CM, et al. 2020 Diverse AR gene rearrangements mediate resistance to androgen receptor inhibitors in metastatic prostate cancer. Clin Cancer Res 26 19651976. (https://doi.org/10.1158/1078-0432.CCR-19-3023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu HE, Vuppalapaty M, Hoerner CR, et al. 2024 Detecting androgen receptor (AR), AR variant 7 (AR-V7), prostate-specific membrane antigen (PSMA), and prostate-specific antigen (PSA) gene expression in CTCs and plasma exosome-derived cfRNA in patients with metastatic castration-resistant prostate cancer (mCRPC) by integrating the VTX-1 CTC isolation system with the QIAGEN AdnaTest. BMC Cancer 24 482. (https://doi.org/10.1186/s12885-024-12139-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lokhandwala PM, Riel SL, Haley L, et al. 2017 Analytical validation of androgen receptor splice variant 7 detection in a Clinical Laboratory Improvement Amendments (CLIA) laboratory setting. J Mol Diagn 19 115125. (https://doi.org/10.1016/j.jmoldx.2016.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lorente D, Omlin A, Zafeiriou Z, et al. 2016 Castration-resistant prostate cancer tissue acquisition from bone metastases for molecular analyses. Clin Genitourin Cancer 14 485493. (https://doi.org/10.1016/j.clgc.2016.04.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mateo J, Carreira S, Sandhu S, et al. 2015 DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373 16971708. (https://doi.org/10.1056/NEJMoa1506859)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mateo J, Porta N, Bianchini D, et al. 2020 Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21 162174. (https://doi.org/10.1016/S1470-2045(19)30684-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mostaghel EA, Marck BT, Plymate SR, et al. 2011 Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 17 59135925. (https://doi.org/10.1158/1078-0432.CCR-11-0728)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakazawa M, Lu C, Chen Y, et al. 2015 Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol 26 18591865. (https://doi.org/10.1093/annonc/mdv282)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nicolosi P, Ledet E, Yang S, et al. 2019 Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol 5 523528. (https://doi.org/10.1001/jamaoncol.2018.6760)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nimir M, Ma Y, Jeffreys SA, et al. 2019 Detection of AR-V7 in liquid biopsies of castrate resistant prostate cancer patients: a comparison of AR-V7 analysis in circulating tumor cells, circulating tumor RNA and exosomes. Cells 8 688. (https://doi.org/10.3390/cells8070688)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nyquist MD, Li Y, Hwang TH, et al. 2013 TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci U S A 110 1749217497. (https://doi.org/10.1073/pnas.1308587110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olmos D, Arkenau H-T, Ang JE, et al. 2009 Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann Oncol 20 2733. (https://doi.org/10.1093/annonc/mdn544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Onstenk W, Sieuwerts AM, Kraan J, et al. 2015 Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol 68 939945. (https://doi.org/10.1016/j.eururo.2015.07.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Quigley DA, Dang HX, Zhao SG, et al. 2018 Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174 758769.e9. (https://doi.org/10.1016/j.cell.2018.06.039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinson D, Van Allen E, Wu Y-M, et al. 2015 Integrative clinical genomics of advanced prostate cancer. Cell 161 12151228. (https://doi.org/10.1016/j.cell.2015.05.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Romanel A, Tandefelt DG, Conteduca V, et al. 2015 Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 7 312re10. (https://doi.org/10.1126/scitranslmed.aac9511)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sammut S-J, Crispin-Ortuzar M, Chin S-F, et al. 2022 Multi-omic machine learning predictor of breast cancer therapy response. Nature 601 623629. (https://doi.org/10.1038/s41586-021-04278-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scher HI, Fizazi K, Saad F, et al. 2012 Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367 11871197. (https://doi.org/10.1056/NEJMoa1207506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scher HI, Lu D, Schreiber NA, et al. 2016 Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2 14411449. (https://doi.org/10.1001/jamaoncol.2016.1828)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scher HI, Graf RP, Schreiber NA, et al. 2018 Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol 4 11791186. (https://doi.org/10.1001/jamaoncol.2018.1621)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwarzenbach H, Alix-Panabières C, Müller I, et al. 2009 Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 15 10321038. (https://doi.org/10.1158/1078-0432.CCR-08-1910)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shaffer DR, Leversha MA, Danila DC, et al. 2007 Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin Cancer Res 13 20232029. (https://doi.org/10.1158/1078-0432.CCR-06-2701)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen SY, Singhania R, Fehringer G, et al. 2018 Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563 579583. (https://doi.org/10.1038/s41586-018-0703-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shiota M, Akamatsu S, Tsukahara S, et al. 2022 Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer 29 R143R155. (https://doi.org/10.1530/ERC-22-0140)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Siegel RL, Giaquinto AN & Jemal A 2024 Cancer statistics, 2024. CA Cancer J Clin 74 1249. (https://doi.org/10.3322/caac.21820)

  • Snyder MW, Kircher M, Hill AJ, et al. 2016 Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164 5768. (https://doi.org/10.1016/j.cell.2015.11.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sperger JM, Strotman LN, Welsh A, et al. 2017 Integrated analysis of multiple biomarkers from circulating tumor cells enabled by exclusion-based analyte isolation. Clin Cancer Res 23 746756. (https://doi.org/10.1158/1078-0432.CCR-16-1021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sumiyoshi T, Mizuno K, Yamasaki T, et al. 2019 Clinical utility of androgen receptor gene aberrations in circulating cell-free DNA as a biomarker for treatment of castration-resistant prostate cancer. Sci Rep 9 4030. (https://doi.org/10.1038/s41598-019-40719-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeda DY, Spisák S, Seo J-H, et al. 2018 A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174 422432.e13. (https://doi.org/10.1016/j.cell.2018.05.037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thadani-Mulero M, Portella L, Sun S, et al. 2014 Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res 74 22702282. (https://doi.org/10.1158/0008-5472.CAN-13-2876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tolmeijer SH, Boerrigter E, Schalken JA, et al. 2020 A systematic review and meta-analysis on the predictive value of cell-free DNA-based androgen receptor copy number gain in patients with castration-resistant prostate cancer. JCO Precis Oncol 4 714729. (https://doi.org/10.1200/PO.20.00084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tran C, Ouk S, Clegg NJ, et al. 2009 Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324 787790. (https://doi.org/10.1126/science.1168175)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trujillo B, Wu A, Wetterskog D, et al. 2022 Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 127 13941402. (https://doi.org/10.1038/s41416-022-01881-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tukachinsky H, Madison RW, Chung JH, et al. 2021 Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. Clin Cancer Res 27 30943105. (https://doi.org/10.1158/1078-0432.CCR-20-4805)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vandekerkhove G, Todenhöfer T, Annala M, et al. 2017 Circulating tumor DNA reveals clinically actionable somatic genome of metastatic bladder cancer. Clin Cancer Res 23 64876497. (https://doi.org/10.1158/1078-0432.CCR-17-1140)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viswanathan SR, Ha G, Hoff AM, et al. 2018 Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174 433447.e19. (https://doi.org/10.1016/j.cell.2018.05.036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woodhouse R, Li M, Hughes J, et al. 2020 Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS One 15 e0237802. (https://doi.org/10.1371/journal.pone.0237802)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wyatt AW, Azad AA, Volik SV, et al. 2016 Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2 15981606. (https://doi.org/10.1001/jamaoncol.2016.0494)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamaguchi T, Ikegami M, Aruga T, et al. 2024 Genomic landscape of comprehensive genomic profiling in patients with malignant solid tumors in Japan. Int J Clin Oncol 29 14171431. (https://doi.org/10.1007/s10147-024-02554-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan X, Mischel P & Chang H 2024 Extrachromosomal DNA in cancer. Nat Rev Cancer 24 261273. (https://doi.org/10.1038/s41568-024-00669-8)

  • Zhang T & Armstrong AJ 2015 Clinical utility of circulating tumor cells in advanced prostate cancer. Curr Oncol Rep 18 3. (https://doi.org/10.1007/s11912-015-0490-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao SG, Chen WS, Li H, et al. 2020 The DNA methylation landscape of advanced prostate cancer. Nat Genet 52 778789. (https://doi.org/10.1038/s41588-020-0648-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao SG, Sperger JM, Schehr JL, et al. 2022 A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer. J Clin Invest 132.e161858. (https://doi.org/10.1172/JCI161858)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao SG, Bootsma M, Zhou S, et al. 2024 Integrated analyses highlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate cancer. Nat Genet 56 16891700. (https://doi.org/10.1038/s41588-024-01826-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zill OA, Banks KC, Fairclough SR, et al. 2018 The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res 24 35283538. (https://doi.org/10.1158/1078-0432.CCR-17-3837)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zivanovic A, Miller JT, Munro SA, et al. 2023 Co-evolution of AR gene copy number and structural complexity in endocrine therapy resistant prostate cancer. NAR Cancer 5 zcad045. (https://doi.org/10.1093/narcan/zcad045)

    • PubMed
    • Search Google Scholar
    • Export Citation