Treatment for castration-resistant prostate cancer (CRPC) primarily involves suppression of androgen receptor (AR) activity using androgen receptor signaling inhibitors (ARSIs). While ARSIs have extended patient survival, resistance inevitably develops. Mechanisms of resistance include genomic aberrations at the AR locus that reactivate AR signaling or lineage plasticity that drives emergence of AR-independent phenotypes. Given the diverse mechanisms of ARSI resistance in CRPC, there is a need for more effective monitoring strategies that detect signs of resistance to inform prognosis and guide use of alternative therapies. Liquid biopsy is a blood test that has emerged as a powerful, minimally invasive tool for investigating advanced cancer. In CRPC, liquid biopsy has been shown to reflect genomic and transcriptomic features in tumor tissue and has been utilized to detect an array of resistance signatures. Liquid biopsy is uninhibited by spatial restrictions and allows for longitudinal monitoring of disease progression. However, current clinical liquid biopsy tests provide limited actionable information. This review highlights recent advancements to the understanding of mechanisms driving treatment resistance in CRPC through research-grade liquid biopsy assays. We explore novel methods of disease characterization developed using liquid biopsy and emphasize the clinical potential of a multi-omics molecular profiling approach to comprehensively detect emerging therapeutic resistance. Routine assessment of therapy resistance using a liquid biopsy assay has the potential to enhance prognostication and improve outcomes of men with CRPC.
Endocrine-Related Cancer is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 40 | 40 | 32 |
PDF Downloads | 47 | 47 | 39 |
Abida W, Cheng ML, Armenia J, et al. 2019a Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 5 471–478. (https://doi.org/10.1001/jamaoncol.2018.5801)
Abida W, Cyrta J, Heller G, et al. 2019b Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 116 11428–11436. (https://doi.org/10.1073/pnas.1902651116)
Abida W, Campbell D, Patnaik A, et al. 2020 Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin Cancer Res 26 2487–2496. (https://doi.org/10.1158/1078-0432.CCR-20-0394)
Adalsteinsson VA, Ha G, Freeman SS, et al. 2017 Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun 8 1324. (https://doi.org/10.1038/s41467-017-00965-y)
Aggarwal R, Huang J, Alumkal JJ, et al. 2018 Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol 36 2492–2503. (https://doi.org/10.1200/JCO.2017.77.6880)
Annala M, Vandekerkhove G, Khalaf D, et al. 2018 Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 8 444–457. (https://doi.org/10.1158/2159-8290.CD-17-0937)
Annala M, Taavitsainen S, Khalaf DJ, et al. 2021 Evolution of castration-resistant prostate cancer in ctDNA during sequential androgen receptor pathway inhibition. Clin Cancer Res 27 4610–4623. (https://doi.org/10.1158/1078-0432.CCR-21-1625)
Antonarakis ES, Lu C, Wang H, et al. 2014 AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371 1028–1038. (https://doi.org/10.1056/NEJMoa1315815)
Antonarakis ES, Lu C, Luber B, et al. 2015 Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 1 582–591. (https://doi.org/10.1001/jamaoncol.2015.1341)
Antonarakis ES, Lu C, Luber B, et al. 2017 Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J Clin Oncol 35 2149–2156. (https://doi.org/10.1200/JCO.2016.70.1961)
Armstrong AJ, Halabi S, Luo J, et al. 2019 Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol 37 1120–1129. (https://doi.org/10.1200/JCO.18.01731)
Armstrong AJ, Luo J, Nanus DM, et al. 2020 Prospective multicenter study of circulating tumor cell AR-V7 and taxane versus hormonal treatment outcomes in metastatic castration-resistant prostate cancer. JCO Precis Oncol 4 1285–1301. (https://doi.org/10.1200/PO.20.00200)
Azad AA, Volik SV, Wyatt AW, et al. 2015 Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21 2315–2324. (https://doi.org/10.1158/1078-0432.CCR-14-2666)
Beltran H & Demichelis F 2021 Therapy considerations in neuroendocrine prostate cancer: what next? Endocr Relat Cancer 28 T67–T78. (https://doi.org/10.1530/ERC-21-0140)
Beltran H, Rickman DS, Park K, et al. 2011 Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 1 487–495. (https://doi.org/10.1158/2159-8290.CD-11-0130)
Beltran H, Prandi D, Mosquera JM, et al. 2016 Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22 298–305. (https://doi.org/10.1038/nm.4045)
Beltran H, Hruszkewycz A, Scher HI, et al. 2019 The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res 25 6916–6924. (https://doi.org/10.1158/1078-0432.CCR-19-1423)
Beltran H, Romanel A, Conteduca V, et al. 2020 Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J Clin Invest 130 1653–1668. (https://doi.org/10.1172/JCI131041)
Berchuck JE, Baca SC, McClure HM, et al. 2022 Detecting neuroendocrine prostate cancer through tissue-informed cell-free DNA methylation analysis. Clin Cancer Res 28 928–938. (https://doi.org/10.1158/1078-0432.CCR-21-3762)
Bluemn EG, Coleman IM, Lucas JM, et al. 2017 Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32 474–489.e6. (https://doi.org/10.1016/j.ccell.2017.09.003)
Bonfil RD & Al-Eyd G 2023 Evolving insights in blood-based liquid biopsies for prostate cancer interrogation. Oncoscience 10 69–80. (https://doi.org/10.18632/oncoscience.592)
Brighi N, Conteduca V, Gurioli G, et al. 2023 Longitudinal assessment of plasma androgen receptor copy number predicts overall survival in subsequent treatment lines in castration-resistant prostate cancer: analysis from a prospective trial. ESMO Open 8 102036. (https://doi.org/10.1016/j.esmoop.2023.102036)
Carreira S, Romanel A, Goodall J, et al. 2014 Tumor clone dynamics in lethal prostate cancer. Sci Transl Med 6 254ra125. (https://doi.org/10.1126/scitranslmed.3009448)
Casanova-Salas I, Aguilar D, Cordoba-Terreros S, et al. 2024 Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 42 1301–1312.e7. (https://doi.org/10.1016/j.ccell.2024.06.003)
Castro E, Romero-Laorden N, Del Pozo A, et al. 2019 PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 37 490–503. (https://doi.org/10.1200/JCO.18.00358)
Chauhan PS, Alahi I, Sinha S, et al. 2024 Genomic and epigenomic analysis of plasma cell-free DNA identifies stemness features associated with worse survival in lethal prostate cancer. Clin Cancer Res 31 OF1-OF13. (https://doi.org/10.1158/1078-0432.CCR-24-1658)
Chen CD, Welsbie DS, Tran C, et al. 2004 Molecular determinants of resistance to antiandrogen therapy. Nat Med 10 33–39. (https://doi.org/10.1038/nm972)
Cheng S, Nguyen ET, Pagano I, et al. 2022 Genomic landscape of circulating-tumor DNA in a diverse cohort of metastatic breast cancer patients. Oncol Res Treat 46 26–32. (https://doi.org/10.1159/000528578)
Cohen JD, Li L, Wang Y, et al. 2018 Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359 926–930. (https://doi.org/10.1126/science.aar3247)
Conteduca V, Wetterskog D, Sharabiani MTA, et al. 2017 Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 28 1508–1516. (https://doi.org/10.1093/annonc/mdx155)
Conteduca V, Castro E, Wetterskog D, et al. 2019 Plasma AR status and cabazitaxel in heavily treated metastatic castration-resistant prostate cancer. Eur J Cancer 116 158–168. (https://doi.org/10.1016/j.ejca.2019.05.007)
Conteduca V, Ku S-Y, Fernandez L, et al. 2021 Circulating tumor cell heterogeneity in neuroendocrine prostate cancer by single cell copy number analysis. NPJ Precis Oncol 5 76. (https://doi.org/10.1038/s41698-021-00211-1)
Cooper CS, Eeles R, Wedge DC, et al. 2015 Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 47 367–372. (https://doi.org/10.1038/ng.3221)
Dang HX, Chauhan PS, Ellis H, et al. 2020 Cell-free DNA alterations in the AR enhancer and locus predict resistance to AR-directed therapy in patients with metastatic prostate cancer. JCO Precis Oncol 4 680–713. (https://doi.org/10.1200/PO.20.00047)
Daniel M, Knutson TP, Sperger JM, et al. 2021 AR gene rearrangement analysis in liquid biopsies reveals heterogeneity in lethal prostate cancer. Endocr Relat Cancer 28 645–655. (https://doi.org/10.1530/ERC-21-0157)
Davis JT, Ghosh TM, Mazumder S, et al. 2023 Extended exposure topotecan significantly improves long-term drug sensitivity by decreasing malignant cell heterogeneity and by preventing epithelial–mesenchymal transition. Int J Mol Sci 24 8490. (https://doi.org/10.3390/ijms24108490)
De Laere B, van Dam P-J, Whitington T, et al. 2017 Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns. Eur Urol 72 192–200. (https://doi.org/10.1016/j.eururo.2017.01.011)
De Laere B, Oeyen S, Mayrhofer M, et al. 2019 TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin Cancer Res 25 1766–1773. (https://doi.org/10.1158/1078-0432.CCR-18-1943)
De Sarkar N, Patton RD, Doebley A-L, et al. 2023 Nucleosome patterns in circulating tumor DNA reveal transcriptional regulation of advanced prostate cancer phenotypes. Cancer Discov 13 632–653. (https://doi.org/10.1158/2159-8290.CD-22-0692)
Dehm SM, Schmidt LJ, Heemers HV, et al. 2008 Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68 5469–5477. (https://doi.org/10.1158/0008-5472.CAN-08-0594)
Del Re M, Biasco E, Crucitta S, et al. 2017 The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 71 680–687. (https://doi.org/10.1016/j.eururo.2016.08.012)
Derderian S, Vesval Q, Wissing MD, et al. 2022 Liquid biopsy‐based targeted gene screening highlights tumor cell subtypes in patients with advanced prostate cancer. Clin Transl Sci 15 2597–2612. (https://doi.org/10.1111/cts.13372)
Deshpande V, Luebeck J, Nguyen N-PD, et al. 2019 Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun 10 392. (https://doi.org/10.1038/s41467-018-08200-y)
Diehl F, Schmidt K, Choti MA, et al. 2008 Circulating mutant DNA to assess tumor dynamics. Nat Med 14 985–990. (https://doi.org/10.1038/nm.1789)
Eisenberger M, Hardy-Bessard A-C, Kim CS, et al. 2017 Phase III study comparing a reduced dose of cabazitaxel (20 mg/m2) and the currently approved dose (25 mg/m2) in postdocetaxel patients with metastatic castration-resistant prostate cancer—PROSELICA. J Clin Oncol 35 3198–3206. (https://doi.org/10.1200/JCO.2016.72.1076)
Fonseca NM, Maurice-Dror C, Herberts C, et al. 2024 Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 15 1828. (https://doi.org/10.1038/s41467-024-45475-w)
Foroni C, Zarovni N, Bianciardi L, et al. 2020 When less is more: specific capture and analysis of tumor exosomes in plasma increases the sensitivity of liquid biopsy for comprehensive detection of multiple androgen receptor phenotypes in advanced prostate cancer patients. Biomedicines 8 131. (https://doi.org/10.3390/biomedicines8050131)
Franceschini GM, Quaini O, Mizuno K, et al. 2024 Noninvasive detection of neuroendocrine prostate cancer through targeted cell-free DNA methylation. Cancer Discov 14 424–445. (https://doi.org/10.1158/2159-8290.CD-23-0754)
Gingrich JR, Barrios RJ, Morton RA, et al. 1996 Metastatic prostate cancer in a transgenic mouse. Cancer Res 56 4096–4102.
Grasso CS, Wu Y-M, Robinson DR, et al. 2012 The mutational landscape of lethal castration-resistant prostate cancer. Nature 487 239–243. (https://doi.org/10.1038/nature11125)
Gundem G, Van Loo P, Kremeyer B, et al. 2015 The evolutionary history of lethal metastatic prostate cancer. Nature 520 353–357. (https://doi.org/10.1038/nature14347)
Guo Z, Yang X, Sun F, et al. 2009 A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69 2305–2313. (https://doi.org/10.1158/0008-5472.CAN-08-3795)
Gurioli G, Conteduca V, Lolli C, et al. 2020 Plasma AR copy number changes and outcome to abiraterone and enzalutamide. Front Oncol 10 567809. (https://doi.org/10.3389/fonc.2020.567809)
Gurioli G, Conteduca V, Brighi N, et al. 2022 Circulating tumor cell gene expression and plasma AR gene copy number as biomarkers for castration-resistant prostate cancer patients treated with cabazitaxel. BMC Med 20 48. (https://doi.org/10.1186/s12916-022-02244-0)
Helzer KT, Sharifi MN, Sperger JM, et al. 2023 Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann Oncol 34 813–825. (https://doi.org/10.1016/j.annonc.2023.06.001)
Henzler C, Li Y, Yang R, et al. 2016 Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat Commun 7 13668. (https://doi.org/10.1038/ncomms13668)
Herberts C, Annala M, Sipola J, et al. 2022 Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer. Nature 608 199–208. (https://doi.org/10.1038/s41586-022-04975-9)
Hodara E, Morrison G, Cunha A, et al. 2019 Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight 4 e125529. (https://doi.org/10.1172/jci.insight.125529)
Hovelson DH, Liu C-J, Wang Y, et al. 2017 Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy. Oncotarget 8 89848–89866. (https://doi.org/10.18632/oncotarget.21163)
Hu R, Lu C, Mostaghel EA, et al. 2012 Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 72 3457–3462. (https://doi.org/10.1158/0008-5472.CAN-11-3892)
Ionescu F, Zhang J & Wang L 2022 Clinical applications of liquid biopsy in prostate cancer: from screening to predictive biomarker. Cancers 14 1728. (https://doi.org/10.3390/cancers14071728)
Ivanov M, Baranova A, Butler T, et al. 2015 Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation. BMC Genom 16 S1. (https://doi.org/10.1186/1471-2164-16-S13-S1)
Jayaram A, Wingate A, Wetterskog D, et al. 2021 Plasma tumor gene conversions after one cycle abiraterone acetate for metastatic castration-resistant prostate cancer: a biomarker analysis of a multicenter international trial. Ann Oncol 32 726–735. (https://doi.org/10.1016/j.annonc.2021.03.196)
Kohli M, Tan W, Zheng T, et al. 2020 Clinical and genomic insights into circulating tumor DNA-based alterations across the spectrum of metastatic hormone-sensitive and castrate-resistant prostate cancer. EBioMedicine 54 102728. (https://doi.org/10.1016/j.ebiom.2020.102728)
Ku SY, Rosario S, Wang Y, et al. 2017 Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355 78–83. (https://doi.org/10.1126/science.aah4199)
Kumar P, Dillon LW, Shibata Y, et al. 2017 Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation. Mol Cancer Res 15 1197–1205. (https://doi.org/10.1158/1541-7786.MCR-17-0095)
Lallous N, Volik SV, Awrey S, et al. 2016 Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17 10. (https://doi.org/10.1186/s13059-015-0864-1)
Ledet EM, Lilly MB, Sonpavde G, et al. 2020 Comprehensive analysis of AR alterations in circulating tumor DNA from patients with advanced prostate cancer. Oncologist 25 327–333. (https://doi.org/10.1634/theoncologist.2019-0115)
Leversha MA, Han J, Asgari Z, et al. 2009 Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res 15 2091–2097. (https://doi.org/10.1158/1078-0432.CCR-08-2036)
Li Y, Alsagabi M, Fan D, et al. 2011 Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res 71 2108–2117. (https://doi.org/10.1158/0008-5472.CAN-10-1998)
Li Y, Hwang TH, Oseth LA, et al. 2012 AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 31 4759–4767. (https://doi.org/10.1038/onc.2011.637)
Li Y, Chan SC, Brand LJ, et al. 2013 Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 73 483–489. (https://doi.org/10.1158/0008-5472.CAN-12-3630)
Li Y, Yang R, Henzler CM, et al. 2020 Diverse AR gene rearrangements mediate resistance to androgen receptor inhibitors in metastatic prostate cancer. Clin Cancer Res 26 1965–1976. (https://doi.org/10.1158/1078-0432.CCR-19-3023)
Liu HE, Vuppalapaty M, Hoerner CR, et al. 2024 Detecting androgen receptor (AR), AR variant 7 (AR-V7), prostate-specific membrane antigen (PSMA), and prostate-specific antigen (PSA) gene expression in CTCs and plasma exosome-derived cfRNA in patients with metastatic castration-resistant prostate cancer (mCRPC) by integrating the VTX-1 CTC isolation system with the QIAGEN AdnaTest. BMC Cancer 24 482. (https://doi.org/10.1186/s12885-024-12139-3)
Lokhandwala PM, Riel SL, Haley L, et al. 2017 Analytical validation of androgen receptor splice variant 7 detection in a Clinical Laboratory Improvement Amendments (CLIA) laboratory setting. J Mol Diagn 19 115–125. (https://doi.org/10.1016/j.jmoldx.2016.08.003)
Lorente D, Omlin A, Zafeiriou Z, et al. 2016 Castration-resistant prostate cancer tissue acquisition from bone metastases for molecular analyses. Clin Genitourin Cancer 14 485–493. (https://doi.org/10.1016/j.clgc.2016.04.016)
Mateo J, Carreira S, Sandhu S, et al. 2015 DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373 1697–1708. (https://doi.org/10.1056/NEJMoa1506859)
Mateo J, Porta N, Bianchini D, et al. 2020 Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21 162–174. (https://doi.org/10.1016/S1470-2045(19)30684-9)
Mostaghel EA, Marck BT, Plymate SR, et al. 2011 Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 17 5913–5925. (https://doi.org/10.1158/1078-0432.CCR-11-0728)
Nakazawa M, Lu C, Chen Y, et al. 2015 Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol 26 1859–1865. (https://doi.org/10.1093/annonc/mdv282)
Nicolosi P, Ledet E, Yang S, et al. 2019 Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol 5 523–528. (https://doi.org/10.1001/jamaoncol.2018.6760)
Nimir M, Ma Y, Jeffreys SA, et al. 2019 Detection of AR-V7 in liquid biopsies of castrate resistant prostate cancer patients: a comparison of AR-V7 analysis in circulating tumor cells, circulating tumor RNA and exosomes. Cells 8 688. (https://doi.org/10.3390/cells8070688)
Nyquist MD, Li Y, Hwang TH, et al. 2013 TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci U S A 110 17492–17497. (https://doi.org/10.1073/pnas.1308587110)
Olmos D, Arkenau H-T, Ang JE, et al. 2009 Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann Oncol 20 27–33. (https://doi.org/10.1093/annonc/mdn544)
Onstenk W, Sieuwerts AM, Kraan J, et al. 2015 Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol 68 939–945. (https://doi.org/10.1016/j.eururo.2015.07.007)
Quigley DA, Dang HX, Zhao SG, et al. 2018 Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174 758–769.e9. (https://doi.org/10.1016/j.cell.2018.06.039)
Robinson D, Van Allen E, Wu Y-M, et al. 2015 Integrative clinical genomics of advanced prostate cancer. Cell 161 1215–1228. (https://doi.org/10.1016/j.cell.2015.05.001)
Romanel A, Tandefelt DG, Conteduca V, et al. 2015 Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 7 312re10. (https://doi.org/10.1126/scitranslmed.aac9511)
Sammut S-J, Crispin-Ortuzar M, Chin S-F, et al. 2022 Multi-omic machine learning predictor of breast cancer therapy response. Nature 601 623–629. (https://doi.org/10.1038/s41586-021-04278-5)
Scher HI, Fizazi K, Saad F, et al. 2012 Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367 1187–1197. (https://doi.org/10.1056/NEJMoa1207506)
Scher HI, Lu D, Schreiber NA, et al. 2016 Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2 1441–1449. (https://doi.org/10.1001/jamaoncol.2016.1828)
Scher HI, Graf RP, Schreiber NA, et al. 2018 Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol 4 1179–1186. (https://doi.org/10.1001/jamaoncol.2018.1621)
Schwarzenbach H, Alix-Panabières C, Müller I, et al. 2009 Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 15 1032–1038. (https://doi.org/10.1158/1078-0432.CCR-08-1910)
Shaffer DR, Leversha MA, Danila DC, et al. 2007 Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin Cancer Res 13 2023–2029. (https://doi.org/10.1158/1078-0432.CCR-06-2701)
Shen SY, Singhania R, Fehringer G, et al. 2018 Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563 579–583. (https://doi.org/10.1038/s41586-018-0703-0)
Shiota M, Akamatsu S, Tsukahara S, et al. 2022 Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer 29 R143–R155. (https://doi.org/10.1530/ERC-22-0140)
Siegel RL, Giaquinto AN & Jemal A 2024 Cancer statistics, 2024. CA Cancer J Clin 74 12–49. (https://doi.org/10.3322/caac.21820)
Snyder MW, Kircher M, Hill AJ, et al. 2016 Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164 57–68. (https://doi.org/10.1016/j.cell.2015.11.050)
Sperger JM, Strotman LN, Welsh A, et al. 2017 Integrated analysis of multiple biomarkers from circulating tumor cells enabled by exclusion-based analyte isolation. Clin Cancer Res 23 746–756. (https://doi.org/10.1158/1078-0432.CCR-16-1021)
Sumiyoshi T, Mizuno K, Yamasaki T, et al. 2019 Clinical utility of androgen receptor gene aberrations in circulating cell-free DNA as a biomarker for treatment of castration-resistant prostate cancer. Sci Rep 9 4030. (https://doi.org/10.1038/s41598-019-40719-y)
Takeda DY, Spisák S, Seo J-H, et al. 2018 A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174 422–432.e13. (https://doi.org/10.1016/j.cell.2018.05.037)
Thadani-Mulero M, Portella L, Sun S, et al. 2014 Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res 74 2270–2282. (https://doi.org/10.1158/0008-5472.CAN-13-2876)
Tolmeijer SH, Boerrigter E, Schalken JA, et al. 2020 A systematic review and meta-analysis on the predictive value of cell-free DNA-based androgen receptor copy number gain in patients with castration-resistant prostate cancer. JCO Precis Oncol 4 714–729. (https://doi.org/10.1200/PO.20.00084)
Tran C, Ouk S, Clegg NJ, et al. 2009 Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324 787–790. (https://doi.org/10.1126/science.1168175)
Trujillo B, Wu A, Wetterskog D, et al. 2022 Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 127 1394–1402. (https://doi.org/10.1038/s41416-022-01881-9)
Tukachinsky H, Madison RW, Chung JH, et al. 2021 Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. Clin Cancer Res 27 3094–3105. (https://doi.org/10.1158/1078-0432.CCR-20-4805)
Vandekerkhove G, Todenhöfer T, Annala M, et al. 2017 Circulating tumor DNA reveals clinically actionable somatic genome of metastatic bladder cancer. Clin Cancer Res 23 6487–6497. (https://doi.org/10.1158/1078-0432.CCR-17-1140)
Viswanathan SR, Ha G, Hoff AM, et al. 2018 Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174 433–447.e19. (https://doi.org/10.1016/j.cell.2018.05.036)
Woodhouse R, Li M, Hughes J, et al. 2020 Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS One 15 e0237802. (https://doi.org/10.1371/journal.pone.0237802)
Wyatt AW, Azad AA, Volik SV, et al. 2016 Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2 1598–1606. (https://doi.org/10.1001/jamaoncol.2016.0494)
Yamaguchi T, Ikegami M, Aruga T, et al. 2024 Genomic landscape of comprehensive genomic profiling in patients with malignant solid tumors in Japan. Int J Clin Oncol 29 1417–1431. (https://doi.org/10.1007/s10147-024-02554-8)
Yan X, Mischel P & Chang H 2024 Extrachromosomal DNA in cancer. Nat Rev Cancer 24 261–273. (https://doi.org/10.1038/s41568-024-00669-8)
Zhang T & Armstrong AJ 2015 Clinical utility of circulating tumor cells in advanced prostate cancer. Curr Oncol Rep 18 3. (https://doi.org/10.1007/s11912-015-0490-9)
Zhao SG, Chen WS, Li H, et al. 2020 The DNA methylation landscape of advanced prostate cancer. Nat Genet 52 778–789. (https://doi.org/10.1038/s41588-020-0648-8)
Zhao SG, Sperger JM, Schehr JL, et al. 2022 A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer. J Clin Invest 132.e161858. (https://doi.org/10.1172/JCI161858)
Zhao SG, Bootsma M, Zhou S, et al. 2024 Integrated analyses highlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate cancer. Nat Genet 56 1689–1700. (https://doi.org/10.1038/s41588-024-01826-3)
Zill OA, Banks KC, Fairclough SR, et al. 2018 The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res 24 3528–3538. (https://doi.org/10.1158/1078-0432.CCR-17-3837)
Zivanovic A, Miller JT, Munro SA, et al. 2023 Co-evolution of AR gene copy number and structural complexity in endocrine therapy resistant prostate cancer. NAR Cancer 5 zcad045. (https://doi.org/10.1093/narcan/zcad045)
Online ISSN: 1479-6821
Print ISSN: 1351-0088
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519