Transforming thyroid cancer management: the impact of neoadjuvant therapy

in Endocrine-Related Cancer
Authors:
Inés Califano Endocrinology Service Instituto de Oncología “Angel H Roffo” University of Buenos Aires, Buenos Aires, Argentina

Search for other papers by Inés Califano in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7450-5832
,
Gregory Randolph Thyroid and Parathyroid Endocrine Surgical Division, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA

Search for other papers by Gregory Randolph in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2542-3830
, and
Fabián Pitoia Division of Endocrinology, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina

Search for other papers by Fabián Pitoia in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2742-7085

Correspondence should be addressed to F Pitoia: fpitoia@intramed.net
Restricted access
Rent on DeepDyve

Sign up for journal news

Neoadjuvant therapy has an emerging role in the management of locally advanced thyroid cancer. Recent developments in systemic therapies, particularly with the introduction of multikinase inhibitors and selective inhibitors, have demonstrated promising results. The objective of this review is to delve into the implications of these developments and their potential impact on the management of advanced thyroid cancers, which initially present as borderline resectable or unresectable. For differentiated thyroid cancer and poorly differentiated thyroid cancer, agents such as lenvatinib have shown substantial tumor reduction, facilitating surgical resection. Similarly, for medullary thyroid cancer, selpercatinib have exhibited interesting response rates, enhancing the feasibility of surgery with reduced morbidity in limited clinical case series of patients with RET mutations. In BRAF mutant ATC, the combination of BRAF and MEK inhibitors has significantly improved treatment protocols, providing a pathway to surgical intervention and significantly improving survival rates. The addition of immune checkpoint inhibitors to these regimens showed further extension of survival and reduced recurrence rates in retrospective studies that still need confirmation. Despite these preliminary favorable results, neoadjuvant therapies are not without challenges. The risk of adverse events, particularly related to the inhibition of the VEGF pathway, necessitates careful patient selection and management. The variability in tumor responses and the potential for serious complications underscore the need for continued research to refine these approaches in this difficult patient population.

Supplementary Materials

 

  • Collapse
  • Expand
  • Abdelhamid AAH , Russell MD , Kyriazidis N , et al. 2023 A phase 2 study of neoadjuvant lenvatinib in locally advanced invasive thyroid cancer. J Clin Oncol 41 (Supplement 16) TPS6105. (https://doi.org/10.1200/jco.2023.41.16_suppl.tps6105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alshehri K , Alqurashi Y , Merdad M , et al. 2022 Neoadjuvant lenvatinib for inoperable thyroid cancer: a case report and literature review. Cancer Rep 5 e1466. (https://doi.org/10.1002/cnr2.1466)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Besic N , Auersperg M , Gazic B , et al. 2012 Neoadjuvant chemotherapy in 29 patients with locally advanced follicular or Hürthle cell thyroid carcinoma: a phase 2 study. Thyroid 22 131137. (https://doi.org/10.1089/thy.2011.0243)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Besic N , Auersperg M , Dremelj M , et al. 2013 Neoadjuvant chemotherapy in 16 patients with locally advanced papillary thyroid carcinoma. Thyroid 23 178184. (https://doi.org/10.1089/thy.2012.0194)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bible KC , Kebebew E , Brierley J , et al. 2021 2021 American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 31 337386. (https://doi.org/10.1089/thy.2020.0944)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blevins DP , Dadu R , Hu M , et al. 2014 Aerodigestive fistula formation as a rare side effect of antiangiogenic tyrosine kinase inhibitor therapy for thyroid cancer. Thyroid 24 918922. (https://doi.org/10.1089/thy.2012.0598)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brose MS , Nuting CM , Jarzab B , et al. 2014 Sorafenib in radioactive iodine-refractory locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384 319328. (https://doi.org/10.1016/S0140-6736(14)60421-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brose MS , Robinson B , Sherman SI , et al. 2021 Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 22 11261138. (https://doi.org/10.1016/s1470-2045(21)00332-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Busaidy NL , Konda B , Wei L , et al. 2022 Dabrafenib versus dabrafenib + trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial. Thyroid 32 11841192. (https://doi.org/10.1089/thy.2022.0115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Capdevila J , Newbold K , Licitra L , et al. 2018 Optimisation of treatment with lenvatinib in radioactive iodine-refractory differentiated thyroid cancer. Cancer Treat Rev 69 164176. (https://doi.org/10.1016/j.ctrv.2018.06.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrillo JF , Flores JM , Espinoza G , et al. 2021 Treatment of unresectable differentiated thyroid carcinoma with upfront external radiotherapy and salvage surgery: a STROBE-compliant retrospective cohort study. Front Oncol 10 572958. (https://doi.org/10.3389/fonc.2020.572958)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Z , Mao Y , You T , et al. 2023 Establishment and validation of a nomogram model for predicting distant metastasis in medullary thyroid carcinoma: an analysis of the SEER database based on the AJCC 8th TNM staging system. Front Endocrinol 15 1119656. (https://doi.org/10.3389/fendo.2023.1119656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng C , Nayernama A , Christopher Jones S , et al. 2019 Wound healing complications with lenvatinib identified in a pharmacovigilance database. J Oncol Pharm Pract 25 18171822. (https://doi.org/10.1177/1078155218817109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cleary JM , Sadow PM , Randolph GW , et al. 2010 Neoadjuvant treatment of unresectable medullary thyroid cancer with sunitinib. J Clin Oncol 28 e390e392. (https://doi.org/10.1200/jco.2009.27.4225)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Contrera KJ , Gule-Monroe MK , Hu MI , et al. 2023 Neoadjuvant selective RET inhibitor for medullary thyroid cancer: a case series. Thyroid 33 129132. (https://doi.org/10.1089/thy.2022.0506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Czaja JM & McCaffrey TV 1997 The surgical management of laryngotracheal invasion by well-differentiated papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg 123 484490. (https://doi.org/10.1001/archotol.1997.01900050030003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dadu R , Hu M & Cabanillas ME 2015 BRAF mutation and the use of vemurafenib in advanced papillary thyroid cancer. Curr Opin Oncol 27 3035. (https://doi.org/10.1210/jc.2014-2246)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Damásio I , Simões-Pereira J , Donato S , et al. 2022 Entrectinib in the neoadjuvant setting of anaplastic thyroid cancer: a case report. Eur Thyroid J 12 e220179. (https://doi.org/10.1530/etj-22-0179)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Danilovic DLS , Castro G Jr , Roitberg FSR , et al. 2018 Potential role of sorafenib as neoadjuvant therapy in unresectable papillary thyroid cancer. Arch Endocrinol Metab 62 370375. (https://doi.org/10.20945/2359-3997000000046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doebele RC , Drilon A , Paz-Ares L , et al. 2020 Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 21 271282. (https://doi.org/10.1016/s1470-2045(19)30691-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elisei R , Schlumberger MJ , Müller SP , et al. 2013 Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 31 36393646. (https://doi.org/10.1200/jco.2012.48.4659)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farlow JL , McCrary HC , Sipos JA , et al. 2023 Neoadjuvant dabrafenib and trametinib for functional organ preservation in recurrent BRAF V600E-mutated papillary thyroid cancer. Oral Oncol 147 106625. (https://doi.org/10.1016/j.oraloncology.2023.106625)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gay S , Monti E , Trambaiolo Antonelli C , et al. 2019 Case report: lenvatinib in neoadjuvant setting in a patient affected by invasive poorly differentiated thyroid carcinoma. Future Oncol 15 1319. (https://doi.org/10.2217/fon-2019-0099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Golingan H , Hunis B , Golding AC , et al. 2019 Neoadjuvant Lenvatinib in advanced unresectable medullary thyroid carcinoma: a case report. AACE Clin Case Rep 6 e73e78. (https://doi.org/10.4158/accr-2019-0365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grasic Kuhar C , Lozar T , Besic N , et al. 2021 Outcome of patients with locally advanced metastatic medullary thyroid cancer and induction therapy with tyrosine kinase inhibitors in Slovenia. Adv Ther 38 56845699. (https://doi.org/10.1007/s12325-021-01940-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerra A , Di Crescenzo V , Garzi A , et al. 2013 Genetic mutations in the treatment of anaplastic thyroid cancer: a systematic review. BMC Surg 13(Suppl 2) S S44. (https://doi.org/10.1186/1471-2482-13-s2-s44)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hadoux J , Elisei R , Brose MS , et al. 2023 Phase 3 trial of selpercatinib in advanced RET-mutant medullary thyroid cancer. N Engl J Med 389 18511861. (https://doi.org/10.1056/NEJMoa2309719)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haigh PI , Ituarte PH , Wu HS , et al. 2001 Completely resected anaplastic thyroid carcinoma combined with adjuvant chemotherapy and irradiation is associated with prolonged survival. Cancer 91 23352342.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamidi S , Iyer PC , Dadu R , et al. 2024 Checkpoint inhibition in addition to dabrafenib/trametinib for BRAFV600E-mutated anaplastic thyroid carcinoma. Thyroid 34 336346. (https://doi.org/10.1089/thy.2023.0573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hartl N , Zago S , Leboulleux S , et al. 2014 Resection margins and prognosis in locally invasive thyroid cancer. Head Neck 36 10341038. (https://doi.org/10.1002/hed.23406)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haugen BR , Alexander EK , Bible KC , et al. 2016 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26 1133. (https://doi.org/10.1089/thy.2015.0020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hawes E , Cabanillas M , Hutcheson K , et al. 2024 Recurrent laryngeal nerve recovery after neoadjuvant therapy for BRAF-mutated anaplastic thyroid cancer. VideoEndocrinology 11 1315. (https://doi.org/10.1089/ve.2023.0038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwasaki H , Toda S , Ito H , et al. 2020 A case of unresectable papillary thyroid carcinoma treated with lenvatinib as neoadjuvant chemotherapy. Case Rep Endocrinol 11 6438352. (https://doi.org/10.1155/2020/6438352)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jozaghi Y , Zafereo M , Williams MD , et al. 2021 Neoadjuvant selpercatinib for advanced medullary thyroid cancer. Head Neck 43 E7E12. (https://doi.org/10.1002/hed.26527)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katoh H , Kajita S , Yokota M , et al. 2021 Neoadjuvant use of lenvatinib in locally advanced papillary thyroid carcinoma involving critical vessels. Int J Endocr Oncologia 7 IJE33. (https://doi.org/10.2217/ije-2020-0014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koehler VF , Adam P , Frank-Raue K , et al. 2021 Real-world efficacy and safety of cabozantinib and vandetanib in advanced medullary thyroid cancer. Thyroid 31 459469. (https://doi.org/10.1089/thy.2020.0206)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lamartina L , Godbert Y , Nascimento C , et al. 2020 Locally unresectable differentiated thyroid cancer: outcomes and perspectives. Endocrine 69 133141. (https://doi.org/10.1007/s12020-020-02245-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee YK , Kim D , Shin DY , et al. 2019 The prognosis of papillary thyroid cancer with initial distant metastasis is strongly associated with extensive extrathyroidal extension: a retrospective cohort study. Ann Surg Oncol 27 22002209. (https://doi.org/10.1245/s10434-019-07314-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maniakas A , Sullivan A , Hu MI , et al. 2024 Decreasing utilization for postoperative radiation therapy in locoregionally advanced medullary thyroid cancer. Head Neck 46 328335. (https://doi.org/10.1002/hed.27584)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nava CF , Scheffel RS , Cristo AP , et al. 2019 Neoadjuvant multikinase inhibitor in patients with locally advanced unresectable thyroid carcinoma. Front Endocrinol 10 712. (https://doi.org/10.3389/fendo.2019.00712)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nixon IJ , Simo R , Newbold K , et al. 2016 Management of invasive differentiated thyroid cancer. Thyroid 26 11561166. (https://doi.org/10.1089/thy.2016.0064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Okubo Y , Toda S , Sato S , et al. 2023 Histological findings of thyroid cancer after lenvatinib therapy. Histopathology 83 657663. (https://doi.org/10.1111/his.15013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park H , Park J , Park SY , et al. 2020 Clinical course from diagnosis to death in patients with well-differentiated thyroid cancer. Cancers 12 2323. (https://doi.org/10.3390/cancers12082323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel N , Woo J , Liss MA , et al. 2016 Does timing of targeted therapy for metastatic renal cell carcinoma impact treatment toxicity and surgical complications? A comparison of primary and adjuvant approaches. Can J Urol 23 82278233.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pitoia F , Abelleira E , Román-González A , et al. 2024a Neoadjuvant treatment of locally advanced thyroid cancer: a preliminary Latin American experience. Thyroid 34 949952. (https://doi.org/10.1089/thy.2024.0090)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pitoia F , Scheffel RS , Califano I , et al. 2024b Management of radioiodine refractory differentiated thyroid cancer: the Latin American perspective. Rev Endocr Metab Disord 25 109121. (https://doi.org/10.1007/s11154-023-09818-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rao SN , Zafereo M , Dadu R , et al. 2017 Patterns of treatment failure in anaplastic thyroid carcinoma. Thyroid 27 672681. (https://doi.org/10.1089/thy.2016.0395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rotolo N , Cattoni M & Imperatori A 2017 Complications from tracheal resection for thyroid carcinoma. Gland Surg 6 574578. (https://doi.org/10.21037/gs.2017.08.05)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rowell NP 2019 The role of external beam radiotherapy in the management of medullary carcinoma of the thyroid: a systematic review. Radiother Oncol 136 113120. (https://doi.org/10.1016/j.radonc.2019.03.033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Russell M , Gild ML , Wirth LJ , et al. 2024a Neoadjuvant therapy to improve resectability of advanced thyroid cancer: a real-world experience. Head Neck 46 24962507. (https://doi.org/10.1002/hed.27735)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Russell MD , Abdelhamid Ahmed AH , Feng Z , et al. 2024b Recovery of recurrent laryngeal nerve function with neoadjuvant treatment: neural characterization. Laryngoscope 134 34153419. (https://doi.org/10.1002/lary.31304)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schlumberger M , Brose M , Elisei R , et al. 2014 Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2 356358. (https://doi.org/10.1016/s2213-8587(13)70215-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schlumberger M , Tahara M , Wirth LJ , et al. 2015 Lenvatinib in radioiodine-refractory thyroid cancer. N Engl J Med 372 621630. (https://doi.org/10.1056/nejmoa1406470)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sessa L , De Crea C , Voloudakis N , et al. 2024 Single institution experience in the management of locally advanced (pT4) differentiated thyroid carcinomas. Ann Surg Oncol 31 55155524. (https://doi.org/10.1245/s10434-024-15356-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shin DH , Mark EJ , Suen HC , et al. 1993 Pathologic staging of papillary carcinoma of the thyroid with airway invasion based on the anatomic manner of extension to the trachea: a clinicopathologic study based on 22 patients who underwent thyroidectomy and airway resection. Hum Pathol 24 866870. (https://doi.org/10.1016/0046-8177(93)90136-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shindo ML , Caruana SM , Kandil E , et al. 2014 Management of invasive well-differentiated thyroid cancer: an American Head and Neck Society consensus statement. AHNS consensus statement. Head Neck 36 13791390. (https://doi.org/10.1002/hed.23619)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shingu K , Kobayashi S , Yokoyama S , et al. 1998 Effectiveness of preoperative radioactive iodine (131I) therapy for locally advanced papillary thyroid cancer: a case report. Thyroid 8 11131116. (https://doi.org/10.1089/thy.1998.8.1113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shonka DC Jr , Ho A , Chintakuntlawar AV , et al. 2022 American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment. Head Neck 44 12771300. (https://doi.org/10.1002/hed.27025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silver Karcioglu A , Abdelhamid AAH , Feng Z , et al. 2023 Return of vocal fold motion and surgical preservation of invaded recurrent laryngeal nerves after the use of neoadjuvant therapy in patients presenting with advanced thyroid cancer and vocal fold paralysis: the lazarus effect. Thyroid 33 12591263. (https://doi.org/10.1089/thy.2023.0136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smallridge RC & Copland JA 2010 Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol 22 486497. (https://doi.org/10.1016/j.clon.2010.03.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smulever A , Barrio Lower Daniele S , Damiano G , et al. 2020 Re: “Complete Surgical Resection Following Neoadjuvant Dabrafenib Plus Trametinib in V600E-Mutated Anaplastic Thyroid Carcinoma” by Wang et al. Thyroid 30 12241225. (https://doi.org/10.1089/thy.2020.0251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Staub Y , Nishiyama A , Suga Y , et al. 2019 Clinical characteristics associated with lenvatinib-induced fistula and tumor-related bleeding in patients with thyroid cancer. Anticancer Res 39 38713878. (https://doi.org/10.21873/anticanres.13537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stewart KE , Strachan MWJ , Srinivasan D , et al. 2019 Tyrosine kinase inhibitor therapy in locally advanced differentiated thyroid cancer: a case report. Eur Thyroid J 8 102107. (https://doi.org/10.1159/000494880)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Su YJ , Cheng SH , Quian J , et al. 2023 Neoadjuvant therapy with anlotinib in a locally advanced and pulmonary metastasis PTC patient harboring TERT promoter and BRAFV600E mutations: a case report. Arch Endocrinol Metab 67 e000659. (https://doi.org/10.20945/2359-3997000000659)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Subbiah V , Hu MI , Wirth LJ , et al. 2021 Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort open-label registrational phase 1/2 study. Lancet Diabetes Endocrinol 9 491501. (https://doi.org/10.1016/s2213-8587(21)00120-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Subbiah V , Kreitman RJ , Wainberg ZA , et al. 2018 Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol 36 713. (https://doi.org/10.1200/jco.2017.73.6785)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Subbiah V , Kreitman RJ , Wainberg ZA , et al. 2022 Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study. Ann Oncol 33 406415. (https://doi.org/10.1016/j.annonc.2021.12.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsuboi M , Takizawa H , Aoyama M , et al. 2017 Surgical treatment of locally advanced papillary thyroid carcinoma after response to lenvatinib: a case report. Int J Surg Case Rep 41 8992. (https://doi.org/10.1016/j.ijscr.2017.10.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tuttle M , Morris LF , Haugen B , et al. 2017. Thyroid differentiated and anaplastic carcinoma. In AJCC Cancer Staging Manual, 8th edition. New York, NY, USA: Springer International Publishing.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valerio L , Giani C , Agate L , et al. 2021 Prevalence and risk factors of developing fistula or organ perforation in patients treated with lenvatinib for radioiodine-refractory thyroid cancer. Eur Thyroid J 10 399407. (https://doi.org/10.1159/000514182)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waguespack SG , Drilon A , Lin JJ , et al. 2022 Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol 186 631643. (https://doi.org/10.1530/eje-21-1259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang JR , Zafereo ME , Dadu R , et al. 2019 Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAFV600E-mutated anaplastic thyroid carcinoma. Thyroid 29 10361043. (https://doi.org/10.1089/thy.2019.0133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wells SA Jr , Robinson BG , Gagel RF , et al. 2012 Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30 134141. (https://doi.org/10.1200/jco.2011.35.5040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wirth LJ , Sherman E , Robinson B , et al. 2020 Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med 383 825835. (https://doi.org/10.1056/nejmoa2005651)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu B , David J , Dogan S , et al. 2022 Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology 80 322337. (https://doi.org/10.1111/his.14550)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yeo JJY , Stewart K , Maniam P , et al. 2023 Neoadjuvant tyrosine kinase inhibitor therapy in locally advanced differentiated thyroid cancer: a single centre case series. J Laryngol Otol 137 12371243. (https://doi.org/10.1017/S0022215123000506)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y , Deng X , Ding Z , et al. 2021 Preoperative neoadjuvant targeted therapy with apatinib for inoperable differentiated thyroid cancer: a case report. Medicine 100 e25191. (https://doi.org/10.1097/MD.0000000000025191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao X , Wang JR , Dadu R , et al. 2023 Surgery after BRAF-directed therapy is associated with improved survival in BRAFV600E mutant anaplastic thyroid cancer: a single-center retrospective cohort study. Thyroid 33 484491. (https://doi.org/10.1089/thy.2022.0504)

    • PubMed
    • Search Google Scholar
    • Export Citation