Spectrum and carcinogenic properties of thyroglobulin gene fusions in thyroid

in Endocrine-Related Cancer
Authors:
Gavin M Schmidt Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by Gavin M Schmidt in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0009-6404-5762
,
Ian J Fornal Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by Ian J Fornal in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0006-4930-6715
,
William R Doerfler Department of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by William R Doerfler in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2439-6786
,
Abigail I Wald Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by Abigail I Wald in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0621-5312
,
Shannon E Keating Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by Shannon E Keating in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2601-0816
,
Marina N Nikiforova Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by Marina N Nikiforova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9976-9378
,
Yuri E Nikiforov Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by Yuri E Nikiforov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2239-1095
, and
Alyaksandr V Nikitski Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Search for other papers by Alyaksandr V Nikitski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6486-667X

Correspondence should be addressed to Y E Nikiforov: nikiforovye@upmc.edu or to A V Nikitski: nikitski.alyaksandr@pitt.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Approximately 10–20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions’ oncogenic and tumorigenic properties. Of eleven cases with surgical pathology, 82% were carcinomas and 18% were noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP). TG fusions preserved exon(s) 1, 1–15, 1–35 or most frequently, 1–47 of TG and, based on the 3′ partner were grouped as i) involving receptor tyrosine kinases (RTKs) (TG::FGFR1, TG::RET, TG::ALK and TG::NTRK1), ii) driving aberrant DPRX and chromosome 19 microRNA cluster expression (TG::DPRX) or iii) involving IGF2 mRNA-binding protein (TG::IGF2BP1). All 13 fusion-positive tumors exhibited strong (8.5 ± 3.3 log2-fold) 3′ partner overexpression driven by the TG promoter. Gene expression analysis revealed TG::RET- and TG::ALK-positive tumors being BRAFV600E-like and remaining tumors RAS-like. In thyroid PCCL3 cells, the TG::NTRK1 fusion demonstrated both spontaneous and ligand-associated dimerization, activated downstream MAPK, AKT and STAT3 signaling and drove xenograft tumorigenesis in nude mice. FDA-approved NTRK inhibitors entrectinib and larotrectinib effectively blocked TG::NTRK1 signaling in vitro and inhibited xenograft tumor growth in vivo. In summary, we report a spectrum of TG gene fusions as recurrent oncogenic events in thyroid cancer and NIFTP that drive strong overexpression of partner genes, frequently RTKs. The TG::NTRK1 fusion is prone to dimerization, activates oncogenic signaling, drives tumorigenesis in thyroid cells and, like other fusions involving RTKs, represents a potential therapeutic target in thyroid cancer.

Supplementary Materials

 

  • Collapse
  • Expand
  • Adaixo R , Steiner EM , Righetto RD , et al. 2022 Cryo-EM structure of native human thyroglobulin. Nat Commun 13 61. (https://doi.org/10.1038/s41467-021-27693-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Al-Jundi M , Thakur S , Gubbi S , et al. 2020 Novel targeted therapies for metastatic thyroid cancer-A comprehensive review. Cancers 12 2104. (https://doi.org/10.3390/cancers12082104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arevalo JC , Conde B , Hempstead BL , et al. 2000 TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor. Mol Cell Biol 20 59085916. (https://doi.org/10.1128/mcb.20.16.5908-5916.2000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cancer Genome Atlas Research Network 2014 Integrated genomic characterization of papillary thyroid carcinoma. Cell 159 676690. (https://doi.org/10.1016/j.cell.2014.09.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ciampi R , Knauf JA , Kerler R , et al. 2005 Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Investig 115 94101. (https://doi.org/10.1172/jci200523237)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coscia F , Taler-Verčič A , Chang VT , et al. 2020 The structure of human thyroglobulin. Nature 578 627630. (https://doi.org/10.1038/s41586-020-1995-4)

  • Cubillos-Rojas M , Amair-Pinedo F , Tato I , et al. 2012 Tris-acetate polyacrylamide gradient gels for the simultaneous electrophoretic analysis of proteins of very high and low molecular mass. Methods Mol Biol 869 205213. (https://doi.org/10.1007/978-1-61779-821-4_17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dremsek P , Schwarz T , Weil B , et al. 2021 Optical genome mapping in routine human genetic diagnostics-its advantages and limitations. Genes 12 1958. (https://doi.org/10.3390/genes12121958)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flor I & Bullerdiek J 2012 The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J Pathol 227 270274. (https://doi.org/10.1002/path.4014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fornari F , Milazzo M , Chieco P , et al. 2012 In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 227 275285. (https://doi.org/10.1002/path.3995)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franco AT , Ricarte-Filho JC , Isaza A , et al. 2022 Fusion oncogenes are associated with increased metastatic capacity and persistent disease in pediatric thyroid cancers. J Clin Oncol 40 10811090. (https://doi.org/10.1200/jco.21.01861)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Greco A , Miranda C & Pierotti MA 2010 Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 321 4449. (https://doi.org/10.1016/j.mce.2009.10.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang Q , Gumireddy K , Schrier M , et al. 2008 The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10 202210. (https://doi.org/10.1038/ncb1681)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kelly LM , Barila G , Liu P , et al. 2014 Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A 111 42334238. (https://doi.org/10.1073/pnas.1321937111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim PS & Arvan P 1991 Folding and assembly of newly synthesized thyroglobulin occurs in a pre-Golgi compartment. J Biol Chem 266 1241212418. (https://doi.org/10.1016/s0021-9258(18)98913-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landa I & Cabanillas ME 2024 Genomic alterations in thyroid cancer: biological and clinical insights. Nat Rev Endocrinol 20 93110. (https://doi.org/10.1038/s41574-023-00920-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lannon CL & Sorensen PHB 2005 ETV6–NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol 15 215223. (https://doi.org/10.1016/j.semcancer.2005.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee J , Wang X , Di Jeso B , et al. 2009 The cholinesterase-like domain, essential in thyroglobulin trafficking for thyroid hormone synthesis, is required for protein dimerization. J Biol Chem 284 1275212761. (https://doi.org/10.1074/jbc.m806898200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li M , Lee KF , Lu Y , et al. 2009 Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16 533546. (https://doi.org/10.1016/j.ccr.2009.10.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao Y , Smyth GK & Shi W 2019 The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47 e47. (https://doi.org/10.1093/nar/gkz114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Love MI , Huber W & Anders S 2014 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15 550. (https://doi.org/10.1186/s13059-014-0550-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nikiforov YE 2002 RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13 316. (https://doi.org/10.1385/ep:13:1:03)

  • Nikiforova MN , Mercurio S , Wald AI , et al. 2018 Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 124 16821690. (https://doi.org/10.1002/cncr.31245)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nikiforova MN , Nikitski AV , Panebianco F , et al. 2019 GLIS rearrangement is a genomic hallmark of hyalinizing trabecular tumor of the thyroid gland. Thyroid 29 161173. (https://doi.org/10.1089/thy.2018.0791)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nikitski AV , Rominski SL , Condello V , et al. 2019 Mouse model of thyroid cancer progression and dedifferentiation driven by STRN-ALK expression and loss of p53: evidence for the existence of two types of poorly differentiated carcinoma. Thyroid 29 14251437. (https://doi.org/10.1089/thy.2019.0284)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nikitski AV , Condello V , Divakaran SS , et al. 2023 Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells. Thyroid 33 464473. (https://doi.org/10.1089/thy.2022.0533)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Panebianco F , Kelly LM , Liu P , et al. 2017 THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer. Proc Natl Acad Sci U S A 114 23072312. (https://doi.org/10.1073/pnas.1614265114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Panebianco F , Nikitski AV , Nikiforova MN , et al. 2019 Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr Relat Cancer 26 803814. (https://doi.org/10.1530/erc-19-0325)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pekova B , Sykorova V , Mastnikova K , et al. 2021 NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers 13 1932. (https://doi.org/10.3390/cancers13081932)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfeifer A , Rusinek D , Żebracka-Gala J , et al. 2019 Novel TG-FGFR1 and TRIM33-NTRK1 transcript fusions in papillary thyroid carcinoma. Genes Chromosomes Cancer 58 558566. (https://doi.org/10.1002/gcc.22737)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raman P & Koenig RJ 2014 Pax-8–PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol 10 616623. (https://doi.org/10.1038/nrendo.2014.115)

  • Reuther GW , Lambert QT , Caligiuri MA , et al. 2000 Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia. Mol Cell Biol 20 86558666. (https://doi.org/10.1128/mcb.20.23.8655-8666.2000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ricarte-Filho JC , Reichenberger ER , Hinkle K , et al. 2024 TG-IGF1R: a novel receptor tyrosine kinase fusion oncogene in pediatric thyroid cancer. Thyroid 34 13081313. (https://doi.org/10.1089/thy.2024.0224)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rippe V , Flor I , Debler JW , et al. 2012 Activation of the two microRNA clusters C19MC and miR-371-3 does not play prominent role in thyroid cancer. Mol Cytogenet 5 40. (https://doi.org/10.1186/1755-8166-5-40)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sabbagh MF , Janovitz T , Dias-Santagata D , et al. 2024 FGFR alterations in thyroid carcinoma: a novel class of primary drivers with significant therapeutic implications and secondary molecular events potentially mediating resistance in thyroid malignancy. Thyroid 34 11371149. (https://doi.org/10.1089/thy.2024.0216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salvatore D , Santoro M & Schlumberger M 2021 The importance of the RET gene in thyroid cancer and therapeutic implications. Nat Rev Endocrinol 17 296306. (https://doi.org/10.1038/s41574-021-00470-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sin-Chan P , Mumal I , Suwal T , et al. 2019 A C19MC-LIN28A-MYCN oncogenic circuit driven by hijacked super-enhancers is a distinct therapeutic vulnerability in ETMRs: a lethal brain tumor. Cancer Cell 36 5167.e7. (https://doi.org/10.1016/j.ccell.2019.06.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh A , Ham J , Po JW , et al. 2021 The genomic landscape of thyroid cancer tumourigenesis and implications for immunotherapy. Cells 10 1082. (https://doi.org/10.3390/cells10051082)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stosic A , Fuligni F , Anderson ND , et al. 2021 Diverse oncogenic fusions and distinct gene expression patterns define the genomic landscape of pediatric papillary thyroid carcinoma. Cancer Res 81 56255637. (https://doi.org/10.1158/0008-5472.can-21-0761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Urfer R , Tsoulfas P , O’Connell L , et al. 1995 An immunoglobulin-like domain determines the specificity of neurotrophin receptors. EMBO J 14 27952805. (https://doi.org/10.1002/j.1460-2075.1995.tb07279.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yakushina VD , Lerner LV & Lavrov AV 2017 Gene fusions in thyroid cancer. Thyroid 28 158167. (https://doi.org/10.1089/thy.2017.0318)

  • Yoo S-K , Song YS , Lee EK , et al. 2019 Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun 10 2764. (https://doi.org/10.1038/s41467-019-10680-5)

    • PubMed
    • Search Google Scholar
    • Export Citation