From bench to bedside in the sella: translational developments in pituitary tumour genetics

in Endocrine-Related Cancer
Author:
Sunita M C De Sousa Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
Endocrine & Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia

Search for other papers by Sunita M C De Sousa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0127-6482

Correspondence should be addressed to S M C De Sousa: Sunita.DeSousa@sa.gov.au

This paper is part of a special collection highlighting the work of emerging leaders in the endocrine cancer field.

Restricted access
Rent on DeepDyve

Sign up for journal news

The two most prevalent pituitary tumour types are pituitary adenomas (also referred to as pituitary neuroendocrine tumours or pitNETs) and craniopharyngiomas, collectively accounting for 98% of all pituitary tumours. The genetic basis of these pituitary tumours is partly understood. In pituitary adenomas, established predisposition genes in the germline setting are MEN1, PRKAR1A, AIP, CDKN1B, GPR101 and the SDHx genes, while somatic driver mutations are well described in GNAS in somatotrophinomas and in USP8 in corticotrophinomas. Craniopharyngiomas are not heritable tumours, but there is a clear genetic basis at the somatic level, with clonal CTNNB1 and BRAF variants present in approximately 95% of adamantinomatous and papillary craniopharyngiomas, respectively. This review explores mechanistic developments in these established genes, new genes in the pituitary adenoma setting (e.g. MAX, CABLES1, CDH23, PAM or CHEK2), and emerging uses of CTNNB1/BRAF testing in the craniopharyngioma setting. It concludes with a discussion of the bench-to-bedside translations of these scientific discoveries as they pertain to clinicians seeing patients with these sellar tumours. In current clinical practice, the most readily applicable and directly impactful translations of recent pituitary genetic research are the opportunities for germline DNA testing for familial pituitary tumour syndromes and tumour DNA testing of craniopharyngiomas to confirm diagnosis (adamantinomatous/papillary craniopharyngioma) and guide treatment (in papillary craniopharyngioma).

 

  • Collapse
  • Expand
  • Agarwal SK , Mateo CM & Marx SJ 2009 Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 94 18261834. (https://doi.org/10.1210/jc.2008-2083)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aguilar-Soto M , Zuarth-Vázquez JM , Leyva-Figueroa L , et al. 2025 Association of pituitary neuroendocrine tumors and neurofibromatosis type 1: assessing causation versus coincidence. Case report. Front Endocrinol 16 1483305. (https://doi.org/10.3389/fendo.2025.1483305)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alexandraki KI , Kaltsas GA , Karavitaki N , et al. 2019 The medical therapy of craniopharyngiomas: the way ahead. J Clin Endocrinol Metab 104 57515764. (https://doi.org/10.1210/jc.2019-01299)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alzahrani AS , Bin Nafisah A , Alswailem M , et al. 2024 Germline variants in sporadic pituitary adenomas. J Endocr Soc 8 bvae085. (https://doi.org/10.1210/jendso/bvae085)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Apps JR , Gonzalez-Meljem JM , Guiho R , et al. 2024 Recurrent adamantinomatous craniopharyngiomas show MAPK pathway activation, clonal evolution and rare TP53-loss-mediated malignant progression. Acta Neuropathol Commun 12 127. (https://doi.org/10.1186/s40478-024-01838-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Asa SL , Mete O , Perry A , et al. 2022 Overview of the 2022 WHO classification of pituitary tumors. Endocr Pathol 33 626. (https://doi.org/10.1007/s12022-022-09703-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bengtsson D , Joost P , Aravidis C , et al. 2017 Corticotroph pituitary carcinoma in a patient with lynch syndrome (LS) and pituitary tumors in a nationwide LS cohort. J Clin Endocrinol Metab 102 39283932. (https://doi.org/10.1210/jc.2017-01401)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bi WL , Greenwald NF , Ramkissoon SH , et al. 2017a Clinical identification of oncogenic drivers and copy-number alterations in pituitary tumors. Endocrinology 158 22842291. (https://doi.org/10.1210/en.2016-1967)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bi WL , Horowitz P , Greenwald NF , et al. 2017b Landscape of genomic alterations in pituitary adenomas. Clin Cancer Res 23 18411851. (https://doi.org/10.1158/1078-0432.ccr-16-0790)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brastianos PK , Taylor-Weiner A , Manley PE , et al. 2014 Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 46 161165. (https://doi.org/10.1038/ng.2868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brastianos PK , Twohy E , Geyer S , et al. 2023 BRAF-MEK inhibition in newly diagnosed papillary craniopharyngiomas. N Engl J Med 389 118126. (https://doi.org/10.1056/nejmoa2213329)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Candy NG , Mignone E , Quick E , et al. 2025 The role of BRAF testing of Rathke's cleft cysts to identify missed papillary craniopharyngioma. Pituitary 28 30. (https://doi.org/10.1007/s11102-025-01501-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cannavo S , Ragonese M , Puglisi S , et al. 2016 Acromegaly is more severe in patients with AHR or AIP gene variants living in highly polluted areas. J Clin Endocrinol Metab 101 18721879. (https://doi.org/10.1210/jc.2015-4191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casar-Borota O , Boldt HB , Engström B , et al. 2021 Corticotroph aggressive pituitary tumors and carcinomas frequently harbor ATRX mutations. J Clin Endocrinol Metab 106 11831194. (https://doi.org/10.1210/clinem/dgaa749)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castellanos LE , Gutierrez C , Smith T , et al. 2022 Epidemiology of common and uncommon adult pituitary tumors in the U.S. according to the 2017 World Health Organization classification. Pituitary 25 201209. (https://doi.org/10.1007/s11102-021-01189-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chahal HS , Chapple JP , Frohman LA , et al. 2010 Clinical, genetic and molecular characterization of patients with familial isolated pituitary adenomas (FIPA). Trends Endocrinol Metab 21 419427. (https://doi.org/10.1016/j.tem.2010.02.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chasseloup F , Regazzo D , Tosca L , et al. 2024 KDM1A genotyping and expression in 146 sporadic somatotroph pituitary adenomas. Eur J Endocrinol 190 173181. (https://doi.org/10.1093/ejendo/lvae013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen J , Jian X , Deng S , et al. 2018 Identification of recurrent USP48 and BRAF mutations in Cushing's disease. Nat Commun 9 3171. (https://doi.org/10.1038/s41467-018-05275-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen M , Persky R , Stegemann R , et al. 2019 Germline USP8 mutation associated with pediatric Cushing disease and other clinical features: a new syndrome. J Clin Endocrinol Metab 104 46764682. (https://doi.org/10.1210/jc.2019-00697)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuny T , Pertuit M , Sahnoun-Fathallah M , et al. 2013 Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don't forget MEN1 genetic analysis. Eur J Endocrinol 168 533541. (https://doi.org/10.1530/eje-12-0763)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuny T , Reynaud R , Raverot G , et al. 2024 Diagnosis and management of children and adult craniopharyngiomas: a French Endocrine Society/French Society for Paediatric Endocrinology & Diabetes Consensus Statement. Ann Endocrinol 86 101631. (https://doi.org/10.1016/j.ando.2024.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daly AF & Beckers A 2024 The genetic pathophysiology and clinical management of the TADopathy, X-linked acrogigantism. Endocr Rev 45 737754. (https://doi.org/10.1210/endrev/bnae014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daly AF , Rixhon M , Adam C , et al. 2006 High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 91 47694775. (https://doi.org/10.1210/jc.2006-1668)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daly AF , Castermans E , Oudijk L , et al. 2018 Pheochromocytomas and pituitary adenomas in three patients with MAX exon deletions. Endocr Relat Cancer 25 L37L42. (https://doi.org/10.1530/erc-18-0065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daly AF , Dunnington LA , Rodriguez-Buritica DF , et al. 2024 Chromatin conformation capture in the clinic: 4C-seq/HiC distinguishes pathogenic from neutral duplications at the GPR101 locus. Genome Med 16 112. (https://doi.org/10.1186/s13073-024-01378-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dandurand C , Sepehry AA , Asadi Lari MH , et al. 2018 Adult craniopharyngioma: case series, systematic review, and meta-analysis. Neurosurgery 83 631641. (https://doi.org/10.1093/neuros/nyx570)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davidoff DF , Benn DE , Field M , et al. 2022 Surveillance improves outcomes for carriers of SDHB pathogenic variants: a multicenter study. J Clin Endocrinol Metab 107 e1907e1916. (https://doi.org/10.1210/clinem/dgac019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Alcubierre D , Gkasdaris G , Mordrel M , et al. 2024 BRAF and MEK inhibitor targeted therapy in papillary craniopharyngiomas: a cohort study. Eur J Endocrinol 191 251261. (https://doi.org/10.1093/ejendo/lvae091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Castro Moreira AR , Trarbach E , Bueno CBF , et al. 2023 PRL-R variants are not only associated with prolactinomas but also with dopamine agonist resistance. J Clin Endocrinol Metab 108 e450e457. (https://doi.org/10.1210/clinem/dgad020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa SM & McCormack AI 2022 Aggressive pituitary tumors and pituitary carcinomas. In Endotext. Eds KR Feingold , B Anawalt , A Boyce , G Chrousos , K Dungan , A Grossman , JM Hershman , G Kaltsas , C Koch & P Kopp , et al. South Dartmouth, MA, USA: MDText.com, Inc. (https://www.ncbi.nlm.nih.gov/books/NBK534881/)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa SM , McCabe MJ , Wu K , et al. 2017 Germline variants in familial pituitary tumour syndrome genes are common in young patients and families with additional endocrine tumours. Eur J Endocrinol 176 635644. (https://doi.org/10.1530/eje-16-0944)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa SM , Hardy TS , Scott HS , et al. 2018 Genetic testing in endocrinology. Clin Biochem Rev 39 1728.

  • De Sousa SMC , Wang PPS , Santoreneos S , et al. 2019 The genomic landscape of sporadic prolactinomas. Endocr Pathol 30 318328. (https://doi.org/10.1007/s12022-019-09587-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa SMC , Manavis J , Feng J , et al. 2020 A putative role for the aryl hydrocarbon receptor (AHR) gene in a patient with cyclical Cushing's disease. BMC Endocr Disord 20 18. (https://doi.org/10.1186/s12902-020-0495-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa SMC , Lenders NF , Lamb LS , et al. 2023a Pituitary tumours: molecular and genetic aspects. J Endocrinol 257 e220291. (https://doi.org/10.1530/joe-22-0291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa SMC , Shen A , Yates CJ , et al. 2023b PAM variants in patients with thyrotrophinomas, cyclical Cushing's disease and prolactinomas. Front Endocrinol 14 1305606. (https://doi.org/10.3389/fendo.2023.1305606)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa SMC , McCormack A , Orsmond A , et al. 2024 Increased prevalence of germline pathogenic CHEK2 variants in individuals with pituitary adenomas. J Clin Endocrinol Metab 109 27202728. (https://doi.org/10.1210/clinem/dgae268)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Endo A , Fukushima T , Takahashi C , et al. 2024 USP8 prevents aberrant NF-κB and Nrf2 activation by counteracting ubiquitin signals from endosomes. J Cell Biol 223 e202306013. (https://doi.org/10.1083/jcb.202306013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernandez A , Karavitaki N & Wass JA 2010 Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol 72 377382. (https://doi.org/10.1111/j.1365-2265.2009.03667.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forlino A , Vetro A , Garavelli L , et al. 2014 PRKACB and Carney complex. N Engl J Med 370 10651067. (https://doi.org/10.1056/nejmc1309730)

  • Formosa R , Borg J & Vassallo J 2017 Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas. Endocr Relat Cancer 24 445457. (https://doi.org/10.1530/erc-17-0112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franco-Álvarez AL , Morán MT , Rebollar-Vega RG , et al. 2023 OR2802 A novel CABLES1 missense variant associated with Cushing's disease disrupts protein structure and stability. J Endocr Soc 7 bvad114.1364. (https://doi.org/10.1210/jendso/bvad114.1364)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Francone VP , Ifrim MF , Rajagopal C , et al. 2010 Signaling from the secretory granule to the nucleus: Uhmk1 and PAM. Mol Endocrinol 24 15431558. (https://doi.org/10.1210/me.2009-0381)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franke M , Daly AF , Palmeira L , et al. 2022 Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism. Am J Hum Genet 109 553570. (https://doi.org/10.1016/j.ajhg.2022.02.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freie B , Ibrahim AH , Carroll PA , et al. 2024 MAX inactivation deregulates the MYC network and induces neuroendocrine neoplasia in multiple tissues. bioRxiv 2024.09.21.614255. (https://doi.org/10.1101/2024.09.21.614255)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • García-Martínez A , Cano DA , Flores-Martínez A , et al. 2019 Why don't corticotroph tumors always produce Cushing's disease? Eur J Endocrinol 181 351361. (https://doi.org/10.1530/eje-19-0338)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gaspar LM , Gonçalves CI , Nobre EL , et al. 2025 Germline genetic variants in young-onset sporadic pituitary macroadenomas: a multigene panel analysis. J Clin Transl Endocrinol 40 100389. (https://doi.org/10.1016/j.jcte.2025.100389)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giontella A , Åkerlund M , Bronton K , et al. 2024 Deficiency of peptidylglycine-alpha-amidating monooxygenase, a cause of sarcopenic diabetes mellitus. J Clin Endocrinol Metab 110 820829. (https://doi.org/10.1210/clinem/dgae510)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorvin CM , Newey PJ , Rogers A , et al. 2019 Association of prolactin receptor (PRLR) variants with prolactinomas. Hum Mol Genet 28 10231037. (https://doi.org/10.1093/hmg/ddy396)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Greidinger D , Halperin R , Zemet R , et al. 2024 Somatic USP8 alteration affects the immune landscape of corticotroph pituitary adenomas-a pilot study. Hormones 23 717725. (https://doi.org/10.1007/s42000-024-00569-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haider A , Sundar J , Beckers A , et al. 2025 Expanding the phenotype of multiple endocrine neoplasia type 5 (MEN5): pituitary gigantism, myelolipoma and familial pheochromocytoma due to a germline pathogenic MAX variant. Endocrine. (https://doi.org/10.1007/s12020-025-04186-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hannah-Shmouni F , Trivellin G , Beckers P , et al. 2022 Neurofibromatosis type 1 has a wide spectrum of growth hormone excess. J Clin Med 11 2168. (https://doi.org/10.3390/jcm11082168)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanson H , Astiazaran-Symonds E , Amendola LM , et al. 2023 Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 25 100870. (https://doi.org/10.1016/j.gim.2023.100870)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haugen BR , Alexander EK , Bible KC , et al. 2016 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26 1133. (https://doi.org/10.1089/thy.2015.0020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernandez-Ramirez LC , Gam R , Valdes N , et al. 2017 Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing's disease. Endocr Relat Cancer 24 379392. (https://doi.org/10.1530/erc-17-0131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernández-Ramírez LC , Pankratz N , Lane J , et al. 2022 Genetic drivers of Cushing's disease: frequency and associated phenotypes. Genet Med 24 25162525. (https://doi.org/10.1016/j.gim.2022.08.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernández-Ramírez LC , Ramírez-Rentería C , Rebollar-Vega RG , et al. 2025 Overlapping presentations and diverse genetic defects characterize neuroendocrine neoplasms in a Mexican cohort. J Clin Endocrinol Metab dgaf075. (https://doi.org/10.1210/clinem/dgaf075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iacovazzo D , Caswell R , Bunce B , et al. 2016 Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun 4 56. (https://doi.org/10.1186/s40478-016-0328-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iglesias P 2022 Targeted therapies in the medical management of craniopharyngioma. Pituitary 25 383392. (https://doi.org/10.1007/s11102-022-01212-4)

  • Jaffrain-Rea ML , Angelini M , Gargano D , et al. 2009 Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. Endocr Relat Cancer 16 10291043. (https://doi.org/10.1677/erc-09-0094)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jaffrain-Rea ML , Rotondi S , Turchi A , et al. 2013 Somatostatin analogues increase AIP expression in somatotropinomas, irrespective of Gsp mutations. Endocr Relat Cancer 20 753766. (https://doi.org/10.1530/erc-12-0322)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kelberman D , Rizzoti K , Lovell-Badge R , et al. 2009 Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30 790829. (https://doi.org/10.1210/er.2009-0008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar D , Mains RE & Eipper BA 2016 60 YEARS OF POMC: From POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C. J Mol Endocrinol 56 T63T76. (https://doi.org/10.1530/jme-15-0266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lau LMS , Khuong-Quang DA , Mayoh C , et al. 2024 Precision-guided treatment in high-risk pediatric cancers. Nat Med 30 19131922. (https://doi.org/10.1038/s41591-024-03044-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lenders NF , Wilkinson AC , Wong SJ , et al. 2021 Transcription factor immunohistochemistry in the diagnosis of pituitary tumours. Eur J Endocrinol 184 891901. (https://doi.org/10.1530/eje-20-1273)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li C , Xie W , Rosenblum JS , et al. 2020 Somatic SF3B1 hotspot mutation in prolactinomas. Nat Commun 11 2506. (https://doi.org/10.1038/s41467-020-16052-8)

  • Lin Y , Jiang X , Shen Y , et al. 2009 Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr Relat Cancer 16 301310. (https://doi.org/10.1677/erc-08-0167)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin AL , Rudneva VA , Richards AL , et al. 2024 Genome-wide loss of heterozygosity predicts aggressive, treatment-refractory behavior in pituitary neuroendocrine tumors. Acta Neuropathol 147 85. (https://doi.org/10.1007/s00401-024-02736-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Manski TJ , Worth CSH , Duval-Arnould BJ , et al. 1994 Optic pathway glioma infiltrating into somatostatinergic pathways in a young boy with gigantism. Case report. J Neurosurg 81 595600. (https://doi.org/10.3171/jns.1994.81.4.0595)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miao H , Liu Y , Lu L , et al. 2021 Effect of 3 NR3C1 mutations in the pathogenesis of pituitary ACTH adenoma. Endocrinology 162 bqab167. (https://doi.org/10.1210/endocr/bqab167)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Momin AA , Recinos MA , Cioffi G , et al. 2021 Descriptive epidemiology of craniopharyngiomas in the United States. Pituitary 24 517522. (https://doi.org/10.1007/s11102-021-01127-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morganti S , Marra A , De Angelis C , et al. 2024 PARP inhibitors for breast cancer treatment: a review. JAMA Oncol 10 658670. (https://doi.org/10.1001/jamaoncol.2023.7322)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naziat A , Karavitaki N , Thakker R , et al. 2013 Confusing genes: a patient with MEN2A and Cushing's disease. Clin Endocrinol 78 966968. (https://doi.org/10.1111/cen.12072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Neou M , Villa C , Armignacco R , et al. 2020 Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell 37 123134.e5. (https://doi.org/10.1016/j.ccell.2019.11.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Newey PJ & Newell-Price J 2022 MEN1 surveillance guidelines: time to (re)think? J Endocr Soc 6 bvac001. (https://doi.org/10.1210/jendso/bvac001)

  • Orsmond A , Krishnan G , Palmer LJ , et al. 2025 FGFR1 variation in the divergent settings of congenital hypopituitarism and pituitary tumours: findings from a study of pituitary organogenesis genes in a pituitary tumour cohort. Pituitary 28 39. (https://doi.org/10.1007/s11102-025-01498-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Toole SM , Dénes J , Robledo M , et al. 2015 15 YEARS OF PARAGANGLIOMA: The association of pituitary adenomas and phaeochromocytomas or paragangliomas. Endocr Relat Cancer 22 T105T122. (https://doi.org/10.1530/erc-15-0241)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Otte A & Müller HL 2021 Childhood-onset craniopharyngioma. J Clin Endocrinol Metab 106 e3820e3836. (https://doi.org/10.1210/clinem/dgab397)

  • Paes T , Buelvas Mebarak J , Magnotto JC , et al. 2024 Somatic activating ESR1 mutation in an aggressive prolactinoma. J Clin Endocrinol Metab 110 11661176. (https://doi.org/10.1210/clinem/dgae615)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez-Rivas LG , Simon J , Albani A , et al. 2022 TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome. Acta Neuropathol Commun 10 139. (https://doi.org/10.1186/s40478-022-01437-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perosevic M , Martinez-Lage M , Swearingen B , et al. 2022 Recurrent acromegaly in a patient with a CHEK2 mutation. AACE Clin Case Rep 8 8588. (https://doi.org/10.1016/j.aace.2021.10.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raghu ALB , Everson MC , Helal A , et al. 2022 Delayed craniospinal metastasis of aggressive nonfunctioning pituitary adenomas as pituitary carcinomas. J Neurol Surg B Skull Base 83 e253e259. (https://doi.org/10.1055/s-0041-1725024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Re A , Ferraù F , Cafiero C , et al. 2020 Somatic deletion in exon 10 of aryl hydrocarbon receptor gene in human GH-secreting pituitary tumors. Front Endocrinol 11 591039. (https://doi.org/10.3389/fendo.2020.591039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reincke M , Sbiera S , Hayakawa A , et al. 2015 Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat Genet 47 3138. (https://doi.org/10.1038/ng.3166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richards S , Aziz N , Bale S , et al. 2015 Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular pathology. Genet Med 17 405424. (https://doi.org/10.1038/gim.2015.30)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roussel-Gervais A , Couture C , Langlais D , et al. 2016 The Cables1 gene in glucocorticoid regulation of pituitary corticotrope growth and Cushing disease. J Clin Endocrinol Metab 101 513522. (https://doi.org/10.1210/jc.2015-3324)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sakamoto M , Kurosawa K , Tanoue K , et al. 2024 A heterozygous germline deletion within USP8 causes severe neurodevelopmental delay with multiorgan abnormalities. J Hum Genet 69 8590. (https://doi.org/10.1038/s10038-023-01209-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sbiera S , Perez-Rivas LG , Taranets L , et al. 2019 Driver mutations in USP8 wild-type Cushing's disease. Neuro Oncol 21 12731283. (https://doi.org/10.1093/neuonc/noz109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seabrook AJ , Harris JE , Velosa SB , et al. 2021 Multiple endocrine tumors associated with germline MAX mutations: multiple endocrine neoplasia type 5? J Clin Endocrinol Metab 106 11631182. (https://doi.org/10.1210/clinem/dgaa957)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen A , Wang P , De Sousa SMC , et al. 2020 MON-LB48 the genomic landscape of sporadic thyrotrophinomas. J Endocr Soc 4 (Supp. Supplement 1) A1151A1152. (https://doi.org/10.1210/jendso/bvaa046.2282)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simon J , Perez-Rivas LG , Zhao Y , et al. 2023 Prevalence and clinical correlations of SF3B1 variants in lactotroph tumours. Eur J Endocrinol 189 372378. (https://doi.org/10.1093/ejendo/lvad114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song ZJ , Reitman ZJ , Ma ZY , et al. 2016 The genome-wide mutational landscape of pituitary adenomas. Cell Res 26 12551259. (https://doi.org/10.1038/cr.2016.114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szeliga A , Pralat A , Witczak W , et al. 2020 CHEK2 mutation in patient with multiple endocrine glands tumors. Case report. Int J Environ Res Public Health 17 4397. (https://doi.org/10.3390/ijerph17124397)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomsen SK , Raimondo A , Hastoy B , et al. 2018 Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 50 11221131. (https://doi.org/10.1038/s41588-018-0173-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tordjman K , Stern N , Ouaknine G , et al. 1993 Activating mutations of the Gs alpha-gene in nonfunctioning pituitary tumors. J Clin Endocrinol Metab 77 765769. (https://doi.org/10.1210/jcem.77.3.8396579)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trivellin G , Daly AF , Faucz FR , et al. 2014 Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med 371 23632374. (https://doi.org/10.1056/nejmoa1408028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trivellin G , Daly AF , Hernández-Ramírez LC , et al. 2023 Germline loss-of-function PAM variants are enriched in subjects with pituitary hypersecretion. Front Endocrinol 14 1166076. (https://doi.org/10.3389/fendo.2023.1166076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Upadhyaya M , Han S , Consoli C , et al. 2004 Characterization of the somatic mutational spectrum of the neurofibromatosis type 1 (NF1) gene in neurofibromatosis patients with benign and malignant tumors. Hum Mutat 23 134146. (https://doi.org/10.1002/humu.10305)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uzilov AV , Taik P , Cheesman KC , et al. 2021 USP8 and TP53 drivers are associated with CNV in a corticotroph adenoma cohort enriched for aggressive tumors. J Clin Endocrinol Metab 106 826842. (https://doi.org/10.1210/clinem/dgaa853)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vallera RD , Ding Y , Hatanpaa KJ , et al. 2022 Case report: two sisters with a germline CHEK2 variant and distinct endocrine neoplasias. Front Endocrinol 13 1024108. (https://doi.org/10.3389/fendo.2022.1024108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vasilev V , Daly AF , Zacharieva S , et al. 2020 Clinical and molecular update on genetic causes of pituitary adenomas. Horm Metab Res 52 553561. (https://doi.org/10.1055/a-1143-5930)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wanichi IQ , De Paula Mariani BM , Frassetto FP , et al. 2019 Cushing's disease due to somatic USP8 mutations: a systematic review and meta-analysis. Pituitary 22 435442. (https://doi.org/10.1007/s11102-019-00973-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whatley M , Francis A , Ng ZY , et al. 2020 Usher syndrome: genetics and molecular links of hearing loss and directions for therapy. Front Genet 11 565216. (https://doi.org/10.3389/fgene.2020.565216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williamson EA , Ince PG , Harrison D , et al. 1995 G-protein mutations in human pituitary adrenocorticotrophic hormone-secreting adenomas. Eur J Clin Invest 25 128131. (https://doi.org/10.1111/j.1365-2362.1995.tb01537.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wong M , Mayoh C , Lau LMS , et al. 2020 Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med 26 17421753. (https://doi.org/10.1038/s41591-020-1072-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu X , Johnson EB , Leverton L , et al. 2013 The advantage of using SNP array in clinical testing for hematological malignancies--a comparative study of three genetic testing methods. Cancer Genet 206 317326. (https://doi.org/10.1016/j.cancergen.2013.09.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yasuda S , Inoue I & Shimada A 2021 Neurofibromatosis type 1 with concurrent multiple endocrine disorders: adenomatous goiter, primary hyperparathyroidism, and acromegaly. Intern Med 60 24512459. (https://doi.org/10.2169/internalmedicine.4981-20)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Q , Peng C , Song J , et al. 2017 Germline mutations in CDH23, encoding cadherin-related 23, are associated with both familial and sporadic pituitary adenomas. Am J Hum Genet 100 817823. (https://doi.org/10.1016/j.ajhg.2017.03.011)

    • PubMed
    • Search Google Scholar
    • Export Citation