CCL2 expression predicts clinical outcomes and regulates E-cadherin and angiogenesis in pituitary tumours

in Endocrine-Related Cancer
Authors:
Ana Luísa Silva Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
Instituto de Saúde Ambiental da Faculdade de Medicina da Universidade de Lisboa (ISAMB-FMUL), Lisbon, Portugal

Search for other papers by Ana Luísa Silva in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4839-8279
,
Sayka Barry Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK

Search for other papers by Sayka Barry in
Current site
Google Scholar
PubMed
Close
,
Mariana Lopes-Pinto Endocrinology Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisbon, Portugal

Search for other papers by Mariana Lopes-Pinto in
Current site
Google Scholar
PubMed
Close
,
Rita Joaquim Faculty of Medicine, Lisbon University, Lisbon, Portugal

Search for other papers by Rita Joaquim in
Current site
Google Scholar
PubMed
Close
,
Catarina Miranda Faculty of Medicine, Lisbon University, Lisbon, Portugal

Search for other papers by Catarina Miranda in
Current site
Google Scholar
PubMed
Close
,
Fábio Reis Faculty of Medicine, Lisbon University, Lisbon, Portugal

Search for other papers by Fábio Reis in
Current site
Google Scholar
PubMed
Close
,
Micaella Miranda Faculty of Medicine, Lisbon University, Lisbon, Portugal

Search for other papers by Micaella Miranda in
Current site
Google Scholar
PubMed
Close
,
Paulo Matos Human Genetics Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

Search for other papers by Paulo Matos in
Current site
Google Scholar
PubMed
Close
,
Oniz Suleyman Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK

Search for other papers by Oniz Suleyman in
Current site
Google Scholar
PubMed
Close
,
Tiago Oliveira Pathology Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisbon, Portugal

Search for other papers by Tiago Oliveira in
Current site
Google Scholar
PubMed
Close
,
Dolores López-Presa Pathology Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisbon, Portugal

Search for other papers by Dolores López-Presa in
Current site
Google Scholar
PubMed
Close
,
Gonçalo Borrecho Pathology Department, Unidade Local de Saúde Alentejo Central, Évora, Portugal

Search for other papers by Gonçalo Borrecho in
Current site
Google Scholar
PubMed
Close
,
Francisco Tortosa Pituitary Tumor Unit, Pathology Department, Hospital CUF Descobertas, Lisbon, Portugal

Search for other papers by Francisco Tortosa in
Current site
Google Scholar
PubMed
Close
,
Claúdia C Faria Neurosurgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisbon, Portugal
Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
GIMM – Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal

Search for other papers by Claúdia C Faria in
Current site
Google Scholar
PubMed
Close
,
Márta Korbonits Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK

Search for other papers by Márta Korbonits in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4101-9432
, and
Pedro Marques Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, Lisbon, Portugal

Search for other papers by Pedro Marques in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4959-5725

Correspondence should be addressed to P Marques: pedro.miguel.sousa.marques@gmail.com

(A L Silva and S Barry contributed equally to this work)

This paper is part of a special collection highlighting the work of emerging leaders in the endocrine cancer field.

Restricted access
Rent on DeepDyve

Sign up for journal news

The crosstalk between tumour cells and microenvironment components in pituitary neuroendocrine tumours (PitNETs), including chemokines, may impact tumour behaviour and clinical outcomes. CCL2 was previously identified as a key chemokine in PitNETs, but its role remains unknown. We aimed to study the role of CCL2 in defining the phenotype and clinical outcomes of PitNETs and in regulating macrophage chemotaxis, epithelial-to-mesenchymal transition (EMT) and angiogenesis. We studied CCL2 and E-cadherin expression, macrophages (CD68 and CD163) and vessels (CD31) in samples from 86 PitNET patients. Higher CCL2 mRNA expression was found in patients who required multimodal and multiple treatments and had active disease at the last follow-up. Higher CCL2 immunoreactivity was observed in patients with larger PitNETs. Among somatotroph tumours, CCL2 mRNA expression correlated with serum IGF-1 at the last follow-up. CCL2 mRNA expression levels correlated negatively with CDH1 expression and with E-cadherin complete membranous staining. In vitro, CCL2 downregulated E-cadherin expression in GH3 cells but did not affect cell morphology or migration. CCL2 expression correlated with the number of vessels, vessel perimeter and vessel area in PitNETs but not with PitNET-infiltrating macrophages. Our data suggest that CCL2 may lead to (or is at least a predictive marker of) poorer clinical outcomes and more difficult-to-treat PitNETs, potentially through its regulatory effects on different tumour-related mechanisms beyond immune cell chemotaxis, including in the activation of the EMT pathway and modulation of angiogenesis in PitNETs. Further studies are needed to corroborate our findings and to validate CCL2 as a potential predictive marker and therapeutic target in PitNETs.

Supplementary Materials

 

  • Collapse
  • Expand
  • Arendt LM , Mccready J , Keller PJ , et al. 2013 Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 73 60806093. (https://doi.org/10.1158/0008-5472.can-13-0926)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Balkwill FR 2012 The chemokine system and cancer. J Pathol 226 148157. (https://doi.org/10.1002/path.3029)

  • Balkwill FR , Capasso M & Hagemann T 2012 The tumor microenvironment at a glance. J Cell Sci 125 55915596. (https://doi.org/10.1242/jcs.116392)

  • Barbieri F , Bajetto A , Stumm R , et al. 2008 Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 14 50225032. (https://doi.org/10.1158/1078-0432.ccr-07-4717)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbieri F , Thellung S , Wurth R , et al. 2014 Emerging targets in pituitary adenomas: role of the CXCL12/CXCR4-R7 system. Int J Endocrinol 2014 753524. (https://doi.org/10.1155/2014/753524)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barry S , Carlsen E , Marques P , et al. 2019 Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 38 53815395. (https://doi.org/10.1038/s41388-019-0779-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bissell MJ & Radisky D 2001 Putting tumours in context. Nat Rev Cancer 1 4654. (https://doi.org/10.1038/35094059)

  • Brittain AL , Basu R , Qian Y , et al. 2017 Growth hormone and the epithelial-to-mesenchymal transition. J Clin Endocrinol Metab 102 36623673. (https://doi.org/10.1210/jc.2017-01000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burke SJ , Goff MR , Updegraff BL , et al. 2012 Regulation of the CCL2 gene in pancreatic β-cells by IL-1β and glucocorticoids: role of MKP-1. PLoS One 7 e46986. (https://doi.org/10.1371/journal.pone.0046986)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chesnokova V & Melmed S 2019 Growth hormone in the tumor microenvironment. Arch Endocrinol Metab 63 568575. (https://doi.org/10.20945/2359-3997000000186)

  • Cristina C , Luque GM , Demarchi G , et al. 2014 Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int J Endocrinol 2014 608497. (https://doi.org/10.1155/2014/608497)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Craene BD & Berx G 2013 Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13 97110. (https://doi.org/10.1038/nrc3447)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elston MS , Gill AJ , Conaglen JV , et al. 2009 Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J Clin Endocrinol Metab 94 14361442. (https://doi.org/10.1210/jc.2008-2075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fei L , Ren X , Yu H , et al. 2021 Targeting the CCL2/CCR2 Axis in cancer immunotherapy: one stone, three birds? Front Immunol 12 771210. (https://doi.org/10.3389/fimmu.2021.771210)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flamini S , Sergeev P , Viana DE Barros Z , et al. 2021 Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis 12 421. (https://doi.org/10.1038/s41419-021-03704-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujiwara K , Yatabe M , Tofrizal A , et al. 2017 Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma. Cell Tissue Res 368 371378. (https://doi.org/10.1007/s00441-016-2564-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Green VL , Atkin SL , Speirs V , et al. 1996 Cytokine expression in human anterior pituitary adenomas. Clin Endocrinol 45 179185. (https://doi.org/10.1046/j.1365-2265.1996.d01-1554.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grizzi F , Borroni EM , Vacchini A , et al. 2015 Pituitary adenoma and the chemokine network: a systemic view. Front Endocrinol 6 141. (https://doi.org/10.3389/fendo.2015.00141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grozinsky-Glasberg S , Shimon I , Korbonits M , et al. 2008 Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer 15 701720. (https://doi.org/10.1677/erc-07-0288)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hao Q , Vadgama JV & Wang P 2020 CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal 18 82. (https://doi.org/10.1186/s12964-020-00589-8)

  • Izhak L , Wildbaum G , Jung S , et al. 2012 Dissecting the autocrine and paracrine roles of the CCR2-CCL2 axis in tumor survival and angiogenesis. PLoS One 7 e28305. (https://doi.org/10.1371/journal.pone.0028305)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jin J , Lin J , Xu A , et al. 2021 CCL2: an important mediator between tumor cells and host cells in tumor microenvironment. Front Oncol 11 722916. (https://doi.org/10.3389/fonc.2021.722916)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim HK , Yang Y , Byeon S , et al. 2021 E-cadherin and angiopoietin-2 as potential biomarkers for colorectal cancer with peritoneal carcinomatosis. Anticancer Res 41 44974504. (https://doi.org/10.21873/anticanres.15260)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kowalski PJ , Rubin MA & Kleer CG 2003 E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5 R217R222. (https://doi.org/10.1186/bcr651)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Law ME , Corsino PE , Jahn SC , et al. 2013 Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene 32 13161329. (https://doi.org/10.1038/onc.2012.138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu Y , Cai Z , Xiao G , et al. 2007 CCR2 expression correlates with prostate cancer progression. J Cell Biochem 101 676685. (https://doi.org/10.1002/jcb.21220)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu JQ , Adam B , Jack AS , et al. 2015 Immune cell infiltrates in pituitary adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocr Pathol 26 263272. (https://doi.org/10.1007/s12022-015-9383-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu C , Donners M , Karel J , et al. 2023 Sex-specific differences in cytokine signaling pathways in circulating monocytes of cardiovascular disease patients. Atherosclerosis 384 117123. (https://doi.org/10.1016/j.atherosclerosis.2023.04.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lupi I , Manetti L , Caturegli P , et al. 2010 Tumor infiltrating lymphocytes but not serum pituitary antibodies are associated with poor clinical outcome after surgery in patients with pituitary adenoma. J Clin Endocrinol Metab 95 289296. (https://doi.org/10.1210/jc.2009-1583)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyu L , Jiang Y , Ma W , et al. 2023 Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-gamma-induced tumour-associated fibroblasts remodelling. Br J Cancer 128 11171133. (https://doi.org/10.1038/s41416-022-02126-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma W , Ou T , Cui X , et al. 2021 HSP47 contributes to angiogenesis by induction of CCL2 in bladder cancer. Cell Signal 85 110044. (https://doi.org/10.1016/j.cellsig.2021.110044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani A , Sozzani S , Locati M , et al. 2002 Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23 549555. (https://doi.org/10.1016/s1471-4906(02)02302-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani A , Schioppa T , Porta C , et al. 2006 Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25 315322. (https://doi.org/10.1007/s10555-006-9001-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani A , Savino B , Locati M , et al. 2010 The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21 2739. (https://doi.org/10.1016/j.cytogfr.2009.11.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques P & Korbonits M 2023 Tumour microenvironment and pituitary tumour behaviour. J Endocrinol Invest 46 10471063. (https://doi.org/10.1007/s40618-023-02089-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques P , Barry S , Carlsen E , et al. 2019a Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun 7 172. (https://doi.org/10.1186/s40478-019-0830-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques P , Barry S , Carlsen E , et al. 2019b Pituitary tumour fibroblast-derived cytokines influence tumour aggressiveness. Endocr Relat Cancer 26 853865. (https://doi.org/10.1530/erc-19-0327)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques P , Barry S , Carlsen E , et al. 2020a The role of the tumour microenvironment in the angiogenesis of pituitary tumours. Endocrine 70 593606. (https://doi.org/10.1007/s12020-020-02478-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques P , Grossman AB & Korbonits M 2020b The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 58 100852. (https://doi.org/10.1016/j.yfrne.2020.100852)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marques P , Silva AL , Lopez-Presa D , et al. 2022 The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications. Pituitary 25 363382. (https://doi.org/10.1007/s11102-022-01211-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mei Y , Bi WL , Greenwald NF , et al. 2016 Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 7 7656576576. (https://doi.org/10.18632/oncotarget.12088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Melmed S , Kaiser UB , Lopes MB , et al. 2022 Clinical biology of the pituitary adenoma. Endocr Rev 43 10031037. (https://doi.org/10.1210/endrev/bnac010)

  • Mendoza-Torreblanca JG , Cardenas-Rodriguez N , Carro-Rodriguez J , et al. 2023 Antiangiogenic effect of dopamine and dopaminergic agonists as an adjuvant therapeutic option in the treatment of cancer, endometriosis, and osteoarthritis. Int J Mol Sci 24 10199. (https://doi.org/10.3390/ijms241210199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nie J , Huang GL , Deng SZ , et al. 2017 The purine receptor P2X7R regulates the release of pro-inflammatory cytokines in human craniopharyngioma. Endocr Relat Cancer 24 287296. (https://doi.org/10.1530/erc-16-0338)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Owen JL & Mohamadzadeh M 2013 Macrophages and chemokines as mediators of angiogenesis. Front Physiol 4 159. (https://doi.org/10.3389/fphys.2013.00159)

  • Oystese KAB , Casar-Borota O , Berg-Johnsen J , et al. 2022 Distribution of E- and N-cadherin in subgroups of non-functioning pituitary neuroendocrine tumours. Endocrine 77 151159. (https://doi.org/10.1007/s12020-022-03051-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pausch TM , Aue E , Wirsik NM , et al. 2020 Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 10 5420. (https://doi.org/10.1038/s41598-020-62416-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peixe C , Alexandre MI , Gomes AR , et al. 2023 Usefulness of a clinicopathological classification in predicting treatment-related outcomes and multimodal therapeutic approaches in pituitary adenoma patients: retrospective analysis on a Portuguese cohort of 129 patients from a tertiary pituitary center. Pituitary 26 352363. (https://doi.org/10.1007/s11102-023-01319-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pellicer N , Galliano D , Herraiz S , et al. 2021 Use of dopamine agonists to target angiogenesis in women with endometriosis. Hum Reprod 36 850858. (https://doi.org/10.1093/humrep/deaa337)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Querzoli P , Coradini D , Pedriali M , et al. 2010 An immunohistochemically positive E-cadherin status is not always predictive for a good prognosis in human breast cancer. Br J Cancer 103 18351839. (https://doi.org/10.1038/sj.bjc.6605991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riabov V , Gudima A , Wang N , et al. 2014 Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5 75. (https://doi.org/10.3389/fphys.2014.00075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rogic A , Pant I , Grumolato L , et al. 2021 High endogenous CCL2 expression promotes the aggressive phenotype of human inflammatory breast cancer. Nat Commun 12 6889. (https://doi.org/10.1038/s41467-021-27108-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruytinx P , Proost P , Van Damme J , et al. 2018 Chemokine-induced macrophage polarization in inflammatory conditions. Front Immunol 9 1930. (https://doi.org/10.3389/fimmu.2018.01930)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sandhu SK , Papadopoulos K , Fong PC , et al. 2013 A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 71 10411050. (https://doi.org/10.1007/s00280-013-2099-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Serioli S , Agostini L , Pietrantoni A , et al. 2023 Aggressive PitNETs and potential target therapies: a systematic review of molecular and genetic pathways. Int J Mol Sci 24 15719. (https://doi.org/10.3390/ijms242115719)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singhai R , Patil VW , Jaiswal SR , et al. 2011 E-cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci 3 227233. (https://doi.org/10.4297/najms.2011.3227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suliman ME , Royds JA , Baxter L , et al. 1999 IL-8 mRNA expression by in situ hybridisation in human pituitary adenomas. Eur J Endocrinol 140 155158. (https://doi.org/10.1530/eje.0.1400155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Susini C & Buscail L 2006 Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol 17 17331742. (https://doi.org/10.1093/annonc/mdl105)

  • Tang MKS , Ip PP & Wong AST 2018 New insights into the role of soluble E-cadherin in tumor angiogenesis. Cell Stress 2 236238. (https://doi.org/10.15698/cst2018.09.154)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang Y , Ma J , Zhang H , et al. 2023 Glucocorticoid receptor regulates the epithelial-mesenchymal transition process through GR/ZEB1/E-cad and is involved in breast cancer endocrine drug resistance-a bioinformatics analysis. Transl Cancer Res 12 31293146. (https://doi.org/10.21037/tcr-23-1628)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thiery JP , Acloque H , Huang RY , et al. 2009 Epithelial-mesenchymal transitions in development and disease. Cell 139 871890. (https://doi.org/10.1016/j.cell.2009.11.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Varghese M , Clemente J , Lerner A , et al. 2022 Monocyte trafficking and polarization contribute to sex differences in meta-inflammation. Front Endocrinol 13 826320. (https://doi.org/10.3389/fendo.2022.826320)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vindelov SD , Hartoft-Nielsen ML , Rasmussen AK , et al. 2011 Interleukin-8 production from human somatotroph adenoma cells is stimulated by interleukin-1beta and inhibited by growth hormone releasing hormone and somatostatin. Growth Horm IGF Res 21 134139. (https://doi.org/10.1016/j.ghir.2011.03.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang PF , Wang TJ , Yang YK , et al. 2018 The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J Neuro Oncol 139 8995. (https://doi.org/10.1007/s11060-018-2844-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu R , Li Y , Yan H , et al. 2019 CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma. Cell Death Dis 10 781. (https://doi.org/10.1038/s41419-019-2012-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yagnik G , Rutowski MJ , Shah SS , et al. 2019 Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget 10 22122223. (https://doi.org/10.18632/oncotarget.26775)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yapa S , Mulla O , Green V , et al. 2017 The role of chemokines in thyroid carcinoma. Thyroid 27 13471359. (https://doi.org/10.1089/thy.2016.0660)

  • Yoshimura T 2017 The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 98 7178. (https://doi.org/10.1016/j.cyto.2017.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu W , Yang L , Li T , et al. 2019 Cadherin signaling in cancer: its functions and role as a therapeutic target. Front Oncol 9 989. (https://doi.org/10.3389/fonc.2019.00989)

    • PubMed
    • Search Google Scholar
    • Export Citation