Biology of RET receptor and its ligands: focus on the nervous system

in Endocrine-Related Cancer
Authors:
Arun Kumar Mahato Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland

Search for other papers by Arun Kumar Mahato in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7541-6279
and
Mart Saarma Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland

Search for other papers by Mart Saarma in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to M Saarma: mart.saarma@helsinki.fi

This paper forms part of the themed collection RET@Thirty: Three Decades of Remarkable Progress. The Guest Editors for this collection were Tom Kurzawinski, Neil McDonald and Kate Newbold.

Restricted access
Rent on DeepDyve

Sign up for journal news

Abstract

The receptor tyrosine kinase RET (rearranged during transfection) is critical for many physiological processes, particularly in the development and function of the nervous system, male reproductive system and renal system. RET signaling is activated physiologically by glial cell line-derived neurotrophic factor family (GDNF) ligands or growth differentiation factor 15 (GDF15) via GDNF family receptor α (GFRα) or GDNF family receptor α-like (GFRAL) co-receptors, respectively, regulating a variety of cellular responses including cell survival, migration, differentiation, proliferation and metabolism. RET is essential for neuronal development, maintenance and axon guidance in the nervous system. RET signaling is critical for kidney and spermatogonia development and the enteric nervous system development and maintenance. Inactivating mutations in the receptor are the primary cause of Hirschsprung disease, a rare intestinal motility disorder characterized by aganglionic megacolon. This review covers the molecular mechanism of RET signaling, its role in the early stages of the nervous system and kidney development during early embryogenesis, and different diseases. It highlights the importance of RET receptors as therapeutic targets.

 

  • Collapse
  • Expand
  • Airaksinen MS & Saarma M 2002 The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3 383394. (https://doi.org/10.1038/nrn812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amoresano A , Incoronato M , Monti G , et al. 2005 Direct interactions among Ret, GDNF and GFRα1 molecules reveal new insights into the assembly of a functional three-protein complex. Cell Signal 17 717727. (https://doi.org/10.1016/j.cellsig.2004.10.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anders J , Kjær S & Ibáñez CF 2001 Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J Biol Chem 276 3580835817. (https://doi.org/10.1074/jbc.M104968200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barker RA , Björklund A , Gash DM , et al. 2020 GDNF and Parkinson’s disease: where next? A summary from a recent workshop. J Parkinsons Dis 10 875891. (https://doi.org/10.3233/JPD-202004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bespalov MM & Saarma M 2007 GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 28 6874. (https://doi.org/10.1016/j.tips.2006.12.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bespalov MM , Sidorova YA , Tumova S , et al. 2011 Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 192 153169. (https://doi.org/10.1083/jcb.201009136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bondarenko O & Saarma M 2021 Neurotrophic factors in Parkinson’s disease: clinical trials, open challenges and nanoparticle-mediated delivery to the brain. Front Cell Neurosci 15 682597. (https://doi.org/10.3389/fncel.2021.682597)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Breit SN , Brown DA & Tsai VW-W 2021 The GDF15-GFRAL pathway in health and metabolic disease: friend or foe? Annu Rev Physiol 83 127151. (https://doi.org/10.1146/annurev-physiol-022020-045449)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chmielarz P , Er Ş , Konovalova J , et al. 2020 GDNF/RET signaling pathway activation eliminates lewy body pathology in midbrain dopamine neurons. Mov Disord 35 22792289. (https://doi.org/10.1002/mds.28258)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chow CFW , Guo X , Asthana P , et al. 2022 Body weight regulation via MT1-MMP-mediated cleavage of GFRAL. Nat Metab 4 203212. (https://doi.org/10.1038/s42255-022-00529-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Costantini F & Shakya R 2006 GDNF/Ret signaling and the development of the kidney. Bioessays 28 117127. (https://doi.org/10.1002/bies.20357)

  • de Graaff E , Srinivas S , Kilkenny C , et al. 2001 Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 15 24332444. (https://doi.org/10.1101/gad.205001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Jong LAW , Sparidans RW & van den Heuvel MM 2023 Cerebrospinal fluid concentration of the RET inhibitor pralsetinib: a case report. Case Rep Oncol 16 15791585. (https://doi.org/10.1159/000535172)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Decressac M , Kadkhodaei B , Mattsson B , et al. 2012 α-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 4 163ra156. (https://doi.org/10.1126/scitranslmed.3004676)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drilon A , Hu ZI , Lai GGY , et al. 2017 Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 15 151. (https://doi.org/10.1038/nrclinonc.2017.175)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Emmerson PJ , Wang F , Du Y , et al. 2017 The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med 23 12151219. (https://doi.org/10.1038/nm.4393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Enomoto H , Araki T , Jackman A , et al. 1998 GFRα1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21 317324. (https://doi.org/10.1016/S0896-6273(00)80541-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Enterría-Morales D , López-López I , López-Barneo J , et al. 2020 Role of glial cell line-derived neurotrophic factor in the maintenance of adult mesencephalic catecholaminergic neurons. Mov Disord 35 565576. (https://doi.org/10.1002/mds.27986)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gill SS , Patel NK , Hotton GR , et al. 2003 Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9 589595. (https://doi.org/10.1038/nm850)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haider MS , Mahato AK , Kotliarova A , et al. 2023 Biological activity in vitro, absorption, BBB penetration, and tolerability of nanoformulation of BT44:RET agonist with disease-modifying potential for the treatment of neurodegeneration. Biomacromolecules 24 43484365. (https://doi.org/10.1021/acs.biomac.2c00761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heiss JD , Lungu C , Hammoud DA , et al. 2019 Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease. Mov Disord 34 10731078. (https://doi.org/10.1002/mds.27724)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heuckeroth RO , Enomoto H , Grider JR , et al. 1999 Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22 253263. (https://doi.org/10.1016/s0896-6273(00)81087-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hsu J-Y , Crawley S , Chen M , et al. 2017 Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550 255259. (https://doi.org/10.1038/nature24042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ivanova L , Tammiku-Taul J , Sidorova Y , et al. 2018 Small-molecule ligands as potential GDNF family receptor agonists. ACS Omega 3 10221030. (https://doi.org/10.1021/acsomega.7b01932)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jain S , Encinas M , Johnson EM , et al. 2006a Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20 321333. (https://doi.org/10.1101/gad.1387206)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jain S , Golden JP , Wozniak D , et al. 2006b RET is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. J Neurosci 26 1123011238. (https://doi.org/10.1523/JNEUROSCI.1876-06.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jmaeff S , Sidorova Y , Lippiatt H , et al. 2020a Small-molecule ligands that bind the RET receptor activate neuroprotective signals independent of but modulated by coreceptor GFRα1. Mol Pharmacol 98 112. (https://doi.org/10.1124/mol.119.118950)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jmaeff S , Sidorova Y , Nedev H , et al. 2020b Small-molecule agonists of the RET receptor tyrosine kinase activate biased trophic signals that are influenced by the presence of GFRa1 co-receptors. J Biol Chem 295 65326542. (https://doi.org/10.1074/jbc.RA119.011802)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kjær S , Kurokawa K , Perrinjaquet M , et al. 2006 Self-association of the transmembrane domain of RET underlies oncogenic activation by MEN2A mutations. Oncogene 25 70867095. (https://doi.org/10.1038/sj.onc.1209698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knowles PP , Murray-Rust J , Kjær S , et al. 2006 Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 281 3357733587. (https://doi.org/10.1074/jbc.M605604200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koeberle PD & Ball AK 1998 Effects of GDNF on retinal ganglion cell survival following axotomy. Vis Res 38 15051515. (https://doi.org/10.1016/s0042-6989(97)00364-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kolvenbach CM , Shril S & Hildebrandt F 2023 The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 19 709720. (https://doi.org/10.1038/s41581-023-00742-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kopra J , Vilenius C , Grealish S , et al. 2015 GDNF is not required for catecholaminergic neuron survival in vivo. Nat Neurosci 18 319322. (https://doi.org/10.1038/nn.3941)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kopra JJ , Panhelainen A , af Bjerkén S , et al. 2017 Dampened amphetamine-stimulated behavior and altered dopamine transporter function in the absence of brain GDNF. J Neurosci 37 15811590. (https://doi.org/10.1523/JNEUROSCI.1673-16.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kramer ER , Aron L , Ramakers GMJ , et al. 2007 Absence of ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5 e39. (https://doi.org/10.1371/journal.pbio.0050039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lang AE , Gill S , Patel NK , et al. 2006 Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59 459466. (https://doi.org/10.1002/ana.20737)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laperle AH , Moser VA , Avalos P , et al. 2023 Human iPSC-derived neural progenitor cells secreting GDNF provide protection in rodent models of ALS and retinal degeneration. Stem Cell Rep 18 16291642. (https://doi.org/10.1016/j.stemcr.2023.03.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ledda F , Paratcha G , Sandoval-Guzmán T , et al. 2007 GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat Neurosci 10 293300. (https://doi.org/10.1038/nn1855)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mahato AK & Saarma M 2024 Neurotrophic factors in Parkinson’s disease: clinical trials. In Regenerative Medicine and Brain Repair, pp 109137. Eds PV Peplow , B Martinez & TA Gennarelli . Cham, Switzerland: Springer International Publishing. (https://doi.org/10.1007/978-3-031-49744-5_4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mahato AK & Sidorova YA 2020a Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson’s disease. Cell Tissue Res 382 147160. (https://doi.org/10.1007/s00441-020-03227-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mahato AK & Sidorova YA 2020b RET receptor tyrosine kinase: role in neurodegeneration, obesity, and cancer. Int J Mol Sci 21 7108. (https://doi.org/10.3390/ijms21197108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mahato AK , Kopra J , Renko J-M , et al. 2020 Glial cell line-derived neurotrophic factor receptor Rearranged during transfection agonist supports dopamine neurons in vitro and enhances dopamine release in vivo. Mov Disord 35 245255. (https://doi.org/10.1002/mds.27943)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marks WJ , Bartus RT , Siffert J , et al. 2010 Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9 11641172. (https://doi.org/10.1016/S1474-4422(10)70254-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marks C , Belluscio L & Ibáñez CF 2012 Critical role of GFRα1 in the development and function of the main olfactory system. J Neurosci 32 1730617320. (https://doi.org/10.1523/JNEUROSCI.1522-12.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meir M , Burkard N , Ungewiß H , et al. 2019 Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest 129 28242840. (https://doi.org/10.1172/JCI120261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meir M , Kannapin F , Diefenbacher M , et al. 2021 Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent. Int J Mol Sci 22 1887. (https://doi.org/10.3390/ijms22041887)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meng X , Lindahl M , Hyvönen ME , et al. 2000 Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287 14891493. (https://doi.org/10.1126/science.287.5457.1489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moore MW , Klein RD , Fariñas I , et al. 1996 Renal and neuronal abnormalities in mice lacking GDNF. Nature 382 7679. (https://doi.org/10.1038/382076a0)

  • Mullican SE , Lin-Schmidt X , Chin C-N , et al. 2017 GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 23 11501157. (https://doi.org/10.1038/nm.4392)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulligan LM 2016 Progress and potential impact of RET kinase targeting in cancer. Expet Rev Proteomics 13 631633. (https://doi.org/10.1080/14789450.2016.1205491)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nutt JG , Burchiel KJ , Comella CL , et al. 2003 Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60 6973. (https://doi.org/10.1212/wnl.60.1.69)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paratcha G , Ledda F , Baars L , et al. 2001 Released GFRα1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-ret to lipid rafts. Neuron 29 171184. (https://doi.org/10.1016/S0896-6273(01)00188-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paratcha G , Ledda F & Ibáñez CF 2003 The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113 867879. (https://doi.org/10.1016/S0092-8674(03)00435-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pascual A , Hidalgo-Figueroa M , Piruat JI , et al. 2008 Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11 755761. (https://doi.org/10.1038/nn.2136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pichel JG , Shen L , Sheng HZ , et al. 1996 Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382 7376. (https://doi.org/10.1038/382073a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Porokuokka LL , Virtanen HT , Lindén J , et al. 2019 Gfra1 underexpression causes Hirschsprung’s disease and associated enterocolitis in mice. Cell Mol Gastroenterol Hepatol 7 655678. (https://doi.org/10.1016/j.jcmgh.2018.12.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Regua AT , Najjar M & Lo H-W 2022 RET signaling pathway and RET inhibitors in human cancer. Front Oncol 12 932353. (https://doi.org/10.3389/fonc.2022.932353)

  • Renko J-M , Voutilainen MH , Visnapuu T , et al. 2020 GDNF receptor agonist alleviates motor imbalance in unilateral 6-hydroxydopamine model of Parkinson’s disease. Front Neurol Neurosci Res 1 100004.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Renko J-M , Mahato AK , Visnapuu T , et al. 2021 Neuroprotective potential of a small molecule RET agonist in cultured dopamine neurons and hemiparkinsonian rats. J Parkinsons Dis 11 10231046. (https://doi.org/10.3233/JPD-202400)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rocco MT , Akhter AS , Ehrlich DJ , et al. 2022 Long-term safety of MRI-guided administration of AAV2-GDNF and gadoteridol in the putamen of individuals with Parkinson’s disease. Mol Ther 30 36323638. (https://doi.org/10.1016/j.ymthe.2022.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rossi J , Luukko K , Poteryaev D , et al. 1999 Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFRα2, a functional neurturin receptor. Neuron 22 243252. (https://doi.org/10.1016/S0896-6273(00)81086-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Runeberg-Roos P , Piccinini E , Penttinen A-M , et al. 2016 Developing therapeutically more efficient Neurturin variants for treatment of Parkinson’s disease. Neurobiol Dis 96 335345. (https://doi.org/10.1016/j.nbd.2016.07.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schuchardt A , D’Agati V , Larsson-Blomberg L , et al. 1994 Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367 380383. (https://doi.org/10.1038/367380a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sidorova YA , Bespalov MM , Wong AW , et al. 2017 A novel small molecule GDNF receptor RET agonist, BT13, promotes neurite growth from sensory neurons in vitro and attenuates experimental neuropathy in the rat. Front Pharmacol 8 365. (https://doi.org/10.3389/fphar.2017.00365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Slevin JT , Gerhardt GA , Smith CD , et al. 2005 Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102 216222. (https://doi.org/10.3171/jns.2005.102.2.0216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strelau J , Schober A , Sullivan A , et al. 2003 Growth/differentiation factor-15 (GDF-15), a novel member of the TGF-beta superfamily, promotes survival of lesioned mesencephalic dopaminergic neurons in vitro and in vivo and is induced in neurons following cortical lesioning. J Neural Transm Suppl 65 197203. (https://doi.org/10.1007/978-3-7091-0643-3_12)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strelau J , Strzelczyk A , Rusu P , et al. 2009 Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci 29 1364013648. (https://doi.org/10.1523/JNEUROSCI.1133-09.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Subbiah V , Gainor JF , Oxnard GR , et al. 2021 Intracranial efficacy of selpercatinib in RET fusion-positive non–small cell lung cancers on the LIBRETTO-001 trial. Clin Cancer Res 27 4160. (https://doi.org/10.1158/1078-0432.CCR-21-0800)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi M , Ritz J & Cooper GM 1985 Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42 581588. (https://doi.org/10.1016/0092-8674(85)90115-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tansey MG , Baloh RH , Milbrandt J , et al. 2000 Gfrα-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25 611623. (https://doi.org/10.1016/S0896-6273(00)81064-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tomac AC , Grinberg A , Huang SP , et al. 1999 Glial cell line-derived neurotrophic factor receptor α1 availability regulates glial cell line-derived neurotrophic factor signaling: evidence from mice carrying one or two mutated alleles. Neuroscience 95 10111023. (https://doi.org/10.1016/S0306-4522(99)00503-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viisanen H , Nuotio U , Kambur O , et al. 2020 Novel RET agonist for the treatment of experimental neuropathies. Mol Pain 16 1744806920950866. (https://doi.org/10.1177/1744806920950866)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Warren Olanow C , Bartus RT , Baumann TL , et al. 2015 Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 78 248257. (https://doi.org/10.1002/ana.24436)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whone A , Luz M , Boca M , et al. 2019a Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 142 512525. (https://doi.org/10.1093/brain/awz023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whone AL , Boca M , Luz M , et al. 2019b Extended treatment with glial cell line-derived neurotrophic factor in Parkinson’s disease. J Parkinsons Dis 9 301313. (https://doi.org/10.3233/JPD-191576)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang L , Chang C-C , Sun Z , et al. 2017 GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med 23 11581166. (https://doi.org/10.1038/nm.4394)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang DK , He FQ , Li TK , et al. 2010 Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J Pathol 222 213222. (https://doi.org/10.1002/path.2749)

    • PubMed
    • Search Google Scholar
    • Export Citation