In vivo and in vitro analysis of functional effects of the SDHD H50R variant

in Endocrine-Related Cancer
Authors:
Shivam Priya Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Shivam Priya in
Current site
Google Scholar
PubMed
Close
,
Karthik Chakravarthy Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Karthik Chakravarthy in
Current site
Google Scholar
PubMed
Close
,
Edward Ziegler Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Edward Ziegler in
Current site
Google Scholar
PubMed
Close
,
Xavier Vesco Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Xavier Vesco in
Current site
Google Scholar
PubMed
Close
,
Krista La Perle Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Krista La Perle in
Current site
Google Scholar
PubMed
Close
,
Xiaoli Zhang Department of Bioinformatics, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Xiaoli Zhang in
Current site
Google Scholar
PubMed
Close
, and
Lawrence S Kirschner Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Lawrence S Kirschner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6180-342X

Correspondence should be addressed to L S Kirschner: Lawrence.Kirschner@nih.gov

(X Zhang is now at College of Nursing, University of South Florida, Tampa, Florida, USA)

(L S Kirschner is now at National Institute of Environmental Health Sciences, Durham, North Carolina, USA)

Restricted access
Rent on DeepDyve

Sign up for journal news

Germline mutations in the four genes (SDHA, SDHB, SDHC and SDHD) encoding the succinate dehydrogenase (SDH) holoenzyme are known to predispose towards the development of tumor including pheochromocytomas/paragangliomas (PPGLs), gastrointestinal stromal tumors (GISTs), clear cell renal cancers (RCC) and possibly others. Mutations in these genes have also been described in patients with Cowden syndrome, which includes tumors of the breast, brain and thyroid gland. Although nonsense mutations are clearly pathogenic, the functional consequences of many missense mutations are unclear. It has previously been reported that the missense mutations SDHDG12S and SDHDH50R predispose to thyroid and breast cancers, although this characterization has been disputed. To address this question, we developed mouse models to test tumorigenicity of these variants. The reference mouse genome codes for a serine at residue 12 in Sdhd, so this variant was not pursued further. To assess the role of SDHDH50R (H50R), we generated a knock-in mouse allele for this variant and studied its effects in vivo as well as in vitro in mouse embryonic fibroblasts. Unlike null alleles for Sdhd, the H50R allele did not produce embryonic lethality when homozygous. There was no statistically significant difference in survival or tumor formation in homozygous or heterozygous animals compared to littermate controls. In vitro studies similarly failed to detect significant differences in proliferation, colony formation or metabolic function. Based on our analysis of this allele’s function both in vivo and in vitro, we conclude that the SDHDH50R allele is most likely a non-pathogenic polymorphism.

Supplementary Materials

 

  • Collapse
  • Expand
  • 1000 Genomes Project Consortium 2015 A global reference for human genetic variation. Nature 526 6874. (https://doi.org/10.1038/nature15393)

  • Amand MMS , Hanover JA & Shiloach J 2016 A comparison of strategies for immortalizing mouse embryonic fibroblasts. J Biol Methods 3 e41. (https://doi.org/10.14440/jbm.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anderson NM , Mucka P , Kern JG , et al. 2018 The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9 216237. (https://doi.org/10.1007/s13238-017-0451-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antonio K , Valdez MMN , Mercado-Asis L , et al. 2020 Pheochromocytoma/paraganglioma: recent updates in genetics, biochemistry, immunohistochemistry, metabolomics, imaging and therapeutic options. Gland Surg 9 105123. (https://doi.org/10.21037/gs.2019.10.25)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ashtekar A , Huk D , Magner A , et al. 2017 Sdhd ablation promotes thyroid tumorigenesis by inducing a stem-like phenotype. Endocr Relat Cancer 24 579591. (https://doi.org/10.1530/erc-17-0229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bayley JP 2011 Succinate dehydrogenase gene variants and their role in Cowden syndrome. Am J Hum Genet 88 674675 author reply 676. (https://doi.org/10.1016/j.ajhg.2010.12.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bayley JP , Devilee P & Taschner PE 2005 The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med Genet 6 39. (https://doi.org/10.1186/1471-2350-6-39)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bayley JP , Van Minderhout I , Hogendoorn PC , et al. 2009 Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma. PLoS One 4 e7987. (https://doi.org/10.1371/journal.pone.0007987)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borowicz S , Van Scoyk M , Avasarala S , et al. 2014 The soft agar colony formation assay. J Vis Exp 92 e51998. (https://doi.org/10.3791/51998)

  • Buffet A , Burnichon N , Favier J , et al. 2020 An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 34 101416. (https://doi.org/10.1016/j.beem.2020.101416)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cairns RA & Mak TW 2013 Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3 730741. (https://doi.org/10.1158/2159-8290.cd-13-0083)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen S , Francioli LC , Goodrich JK , et al. 2024 A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625 92100. (https://doi.org/10.1038/s41586-023-06045-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen AL , Holmen SL & Colman H 2013 IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 13 345. (https://doi.org/10.1007/s11910-013-0345-4)

  • Dalla Pozza E , Dando I , Pacchiana R , et al. 2020 Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 98 414. (https://doi.org/10.1016/j.semcdb.2019.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Favier J , Briere JJ , Strompf L , et al. 2005 Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency. Horm Res 63 171179. (https://doi.org/10.1159/000084685)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fullerton M , Mcfarland R , Taylor RW , et al. 2020 The genetic basis of isolated mitochondrial complex II deficiency. Mol Genet Metab 131 5365. (https://doi.org/10.1016/j.ymgme.2020.09.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo C , Pirozzi CJ , Lopez GY , et al. 2011 Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr Opin Neurol 24 648652. (https://doi.org/10.1097/wco.0b013e32834cd415)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han S , Liu Y , Cai SJ , et al. 2020 IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 122 15801589. (https://doi.org/10.1038/s41416-020-0814-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hensen EF & Bayley JP 2011 Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer 10 355363. (https://doi.org/10.1007/s10689-010-9402-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hobert JA & Eng C 2009 PTEN hamartoma tumor syndrome: an overview. Genet Med 11 687694. (https://doi.org/10.1097/gim.0b013e3181ac9aea)

  • Kantorovich V , King KS & Pacak K 2010 SDH-related pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 24 415424. (https://doi.org/10.1016/j.beem.2010.04.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khazal FA , Holte MN , Bolon B , et al. 2019 A conditional mouse model of complex II deficiency manifesting as Leigh-like syndrome. FASEB J 33 1318913201. (https://doi.org/10.1096/fj.201802655rr)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lepoutre-Lussey C , Thibault C , Buffet A , et al. 2016 From Nf1 to Sdhb knockout: successes and failures in the quest for animal models of pheochromocytoma. Mol Cell Endocrinol 421 4048. (https://doi.org/10.1016/j.mce.2015.06.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Letouze E , Martinelli C , Loriot C , et al. 2013 SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23 739752. (https://doi.org/10.1016/j.ccr.2013.04.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin S , Fasham J , Al-Hijawi F , et al. 2021 Consolidating biallelic SDHD variants as a cause of mitochondrial complex II deficiency. Eur J Hum Genet 29 15701576. (https://doi.org/10.1038/s41431-021-00887-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loughrey PB , Roncaroli F , Healy E , et al. 2022 Succinate dehydrogenase and MYC-associated factor X mutations in pituitary neuroendocrine tumours. Endocr Relat Cancer 29 R157R172. (https://doi.org/10.1530/erc-22-0157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mahdi H , Mester JL , Nizialek EA , et al. 2015 Germline PTEN, SDHB-D, and KLLN alterations in endometrial cancer patients with Cowden and Cowden-like syndromes: an international, multicenter, prospective study. Cancer 121 688696. (https://doi.org/10.1002/cncr.29106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinotti S & Ranzato E 2020 Scratch wound healing assay. Methods Mol Biol 2109 225229. (https://doi.org/10.1007/7651_2019_259)

  • Mete O , Asa SL , Gill AJ , et al. 2022 Overview of the 2022 WHO classification of paragangliomas and pheochromocytomas. Endocr Pathol 33 90114. (https://doi.org/10.1007/s12022-022-09704-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nadella KS & Kirschner LS 2005 Disruption of protein kinase a regulation causes immortalization and dysregulation of D-type cyclins. Cancer Res 65 1030710315. (https://doi.org/10.1158/0008-5472.can-05-3183)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ni Y , Zbuk KM , Sadler T , et al. 2008 Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet 83 261268. (https://doi.org/10.1016/j.ajhg.2008.07.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ni Y , He X , Chen J , et al. 2012 Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet 21 300310. (https://doi.org/10.1093/hmg/ddr459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Papathomas TG , Oudijk L , Persu A , et al. 2015 SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol 28 807821. (https://doi.org/10.1038/modpathol.2015.41)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pavel E , Nadella K , Towns WH 2nd , et al. 2008 Mutation of Prkar1a causes osteoblast neoplasia driven by dysregulation of protein kinase A. Mol Endocrinol 22 430440. (https://doi.org/10.1210/me.2007-0369)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piruat JI , Pintado CO , Ortega-Saenz P , et al. 2004 The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol 24 1093310940. (https://doi.org/10.1128/mcb.24.24.10933-10940.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pringle DR , Yin Z , Lee AA , et al. 2012 Thyroid-specific ablation of the Carney complex gene, PRKAR1A, results in hyperthyroidism and follicular thyroid cancer. Endocr Relat Cancer 19 435446. (https://doi.org/10.1530/erc-11-0306)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richter S , Peitzsch M , Rapizzi E , et al. 2014 Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J Clin Endocrinol Metab 99 39033911. (https://doi.org/10.1210/jc.2014-2151)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruhoy IS & Saneto RP 2014 The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7 221234. (https://doi.org/10.2147/tacg.s46176)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Siebers EM , Choi MJ , Tinklenberg JA , et al. 2018 Sdha+/− rats display minimal muscle pathology without significant behavioral or biochemical abnormalities. J Neuropathol Exp Neurol 77 665672. (https://doi.org/10.1093/jnen/nly042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suarez-Arnedo A , Torres Figueroa F , Clavijo C , et al. 2020 An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS One 15 e0232565. (https://doi.org/10.1371/journal.pone.0232565)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Nederveen FH , Gaal J , Favier J , et al. 2009 An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10 764771. (https://doi.org/10.1016/s1470-2045(09)70164-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wachtel H & Fishbein L 2021 Genetics of pheochromocytoma and paraganglioma. Curr Opin Endocrinol Diabetes Obes 28 283290. (https://doi.org/10.1097/med.0000000000000634)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu W , He X , Ni Y , et al. 2015 Cowden syndrome-associated germline SDHD variants alter PTEN nuclear translocation through SRC-induced PTEN oxidation. Hum Mol Genet 24 142153. (https://doi.org/10.1093/hmg/ddu425)

    • PubMed
    • Search Google Scholar
    • Export Citation