Browse

You are looking at 91 - 100 of 138 items for

  • Open access x
Clear All
Open access

Josefine Bostner, Elin Karlsson, Cecilia Bivik Eding, Gizeh Perez-Tenorio, Hanna Franzén, Aelita Konstantinell, Tommy Fornander, Bo Nordenskjöld, and Olle Stål

Detection of signals in the mammalian target of rapamycin (mTOR) and the estrogen receptor (ER) pathways may be a future clinical tool for the prediction of adjuvant treatment response in primary breast cancer. Using immunohistological staining, we investigated the value of the mTOR targets p70-S6 kinase (S6K) 1 and 2 as biomarkers for tamoxifen benefit in two independent clinical trials comparing adjuvant tamoxifen with no tamoxifen or 5 years versus 2 years of tamoxifen treatment. In addition, the prognostic value of the S6Ks was evaluated. We found that S6K1 correlated with proliferation, HER2 status, and cytoplasmic AKT activity, whereas high protein expression levels of S6K2 and phosphorylated (p) S6K were more common in ER-positive, and low-proliferative tumors with pAKT-s473 localized to the nucelus. Nuclear accumulation of S6K1 was indicative of a reduced tamoxifen effect (hazard ratio (HR): 1.07, 95% CI: 0.53–2.81, P=0.84), compared with a significant benefit from tamoxifen treatment in patients without tumor S6K1 nuclear accumulation (HR: 0.42, 95% CI: 0.29–0.62, P<0.00001). Also S6K1 and S6K2 activation, indicated by pS6K-t389 expression, was associated with low benefit from tamoxifen (HR: 0.97, 95% CI: 0.50–1.87, P=0.92). In addition, high protein expression of S6K1, independent of localization, predicted worse prognosis in a multivariate analysis, P=0.00041 (cytoplasm), P=0.016 (nucleus). In conclusion, the mTOR-activated kinases S6K1 and S6K2 interfere with proliferation and response to tamoxifen. Monitoring their activity and intracellular localization may provide biomarkers for breast cancer treatment, allowing the identification of a group of patients less likely to benefit from tamoxifen and thus in need of an alternative or additional targeted treatment.

Open access

Felix Haglund, Carl Christofer Juhlin, Taylor Brown, Mehran Ghaderi, Tiantian Liu, Adam Stenman, Andrii Dinets, Manju Prasad, Reju Korah, Dawei Xu, Tobias Carling, and Catharina Larsson

Open access

Felicity E B May and Bruce R Westley

The stratification of breast cancer patients for endocrine therapies by oestrogen or progesterone receptor expression is effective but imperfect. The present study aims were to validate microarray studies that demonstrate TFF3 regulation by oestrogen and its association with oestrogen receptors in breast cancer, to evaluate TFF3 as a biomarker of endocrine response, and to investigate TFF3 function. Microarray data were validated by quantitative RT-PCR and northern and western transfer analyses. TFF3 was induced by oestrogen, and its induction was inhibited by antioestrogens, tamoxifen, 4-hydroxytamoxifen and fulvestrant in oestrogen-responsive breast cancer cells. The expression of TFF3 mRNA was associated with oestrogen receptor mRNA in breast tumours (Pearson's coefficient=0.762, P=0.000). Monoclonal antibodies raised against the TFF3 protein detected TFF3 by immunohistochemistry in oesophageal submucosal glands, intestinal goblet and neuroendocrine cells, Barrett's metaplasia and intestinal metaplasia. TFF3 protein expression was associated with oestrogen receptor, progesterone receptor and TFF1 expression in malignant breast cells. TFF3 is a specific and sensitive predictive biomarker of response to endocrine therapy, degree of response and duration of response in unstratified metastatic breast cancer patients (P=0.000, P=0.002 and P=0.002 respectively). Multivariate binary logistic regression analysis demonstrated that TFF3 is an independent biomarker of endocrine response and degree of response, and this was confirmed in a validation cohort. TFF3 stimulated migration and invasion of breast cancer cells. In conclusion, TFF3 expression is associated with response to endocrine therapy, and outperforms oestrogen receptor, progesterone receptor and TFF1 as an independent biomarker, possibly because it mediates the malign effects of oestrogen on invasion and metastasis.

Open access

Ying Ni, Spencer Seballos, Shireen Ganapathi, Danielle Gurin, Benjamin Fletcher, Joanne Ngeow, Rebecca Nagy, Richard T Kloos, Matthew D Ringel, Thomas LaFramboise, and Charis Eng

Along with breast and endometrial cancers, thyroid cancer is a major component cancer in Cowden syndrome (CS). Germline variants in SDHB/C/D (SDHx) genes account for subsets of CS/CS-like cases, conferring a higher risk of breast and thyroid cancers over those with only germline PTEN mutations. To investigate whether SDHx alterations at both germline and somatic levels occur in apparently sporadic breast cancer and differentiated thyroid cancer (DTC), we analyzed SDHx genes in the following four groups: i) 48 individuals with sporadic invasive breast adenocarcinoma for germline mutation; ii) 48 (expanded to 241) DTC for germline mutation; iii) 37 pairs DTC tumor-normal tissues for germline and somatic mutation and mRNA expression levels; and iv) data from 476 patients in the Cancer Genome Atlas thyroid carcinoma dataset for validation. No germline SDHx variant was found in a pilot series of 48 breast cancer cases. As germline SDHx variants were found in our pilot of 48 thyroid cancer cases, we expanded to three series of DTC comprising a total 754 cases, and found 48 (6%) with germline SDHx variants (P<0.001 compared with 0/350 controls). In 513 tumors, we found 27 (5%) with large somatic duplications within chromosome 1 encompassing SDHC. Both papillary and follicular thyroid tumors showed consistent loss of SDHC/D gene expression (P<0.001), which is associated with earlier disease onset and higher pathological-TNM stage. Therefore, we conclude that both germline and somatic SDHx mutations/variants occur in sporadic DTC but are very rare in sporadic breast cancer, and overall loss of SDHx gene expression is a signature of DTC.

Open access

Charles E Massie, Inmaculada Spiteri, Helen Ross-Adams, Hayley Luxton, Jonathan Kay, Hayley C Whitaker, Mark J Dunning, Alastair D Lamb, Antonio Ramos-Montoya, Daniel S Brewer, Colin S Cooper, Rosalind Eeles, UK Prostate ICGC Group, Anne Y Warren, Simon Tavaré, David E Neal, and Andy G Lynch

Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year in the UK. Sequencing and copy number analysis of primary tumours has revealed heterogeneity within tumours and an absence of recurrent founder mutations, consistent with non-genetic disease initiating events. Using methylation profiling in a series of multi-focal prostate tumours, we identify promoter methylation of the transcription factor HES5 as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration occurs in 86–97% of cases in two independent prostate cancer cohorts (n=49 and n=39 tumour–normal pairs). Treatment of prostate cancer cells with the demethylating agent 5-aza-2′-deoxycytidine increased HES5 expression and downregulated its transcriptional target HES6, consistent with functional silencing of the HES5 gene in prostate cancer. Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6 and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point for future functional studies.

Open access

Rodrigo A Toledo, Roxanne Hatakana, Delmar M Lourenço Jr, Susan C Lindsey, Cleber P Camacho, Marcio Almeida, José V Lima Jr, Tomoko Sekiya, Elena Garralda, Michel S Naslavsky, Guilherme L Yamamoto, Monize Lazar, Osorio Meirelles, Tiago J P Sobreira, Maria Lucia Lebrao, Yeda A O Duarte, John Blangero, Mayana Zatz, Janete M Cerutti, Rui M B Maciel, and Sergio P A Toledo

Accurate interpretation of germline mutations of the rearranged during transfection (RET) proto-oncogene is vital for the proper recommendation of preventive thyroidectomy in medullary thyroid carcinoma (MTC)-prone carriers. To gain information regarding the most disputed variant of RET, ATA-A Y791F, we sequenced blood DNA samples from a cohort of 2904 cancer-free elderly individuals (1261 via Sanger sequencing and 1643 via whole-exome/genome sequencing). We also accessed the exome sequences of an additional 8069 individuals from non-cancer-related laboratories and public databanks as well as genetic results from the Catalogue of Somatic Mutations in Cancer (COSMIC) project. The mean allelic frequency observed in the controls was 0.0031, with higher occurrences in Central European populations (0.006/0.008). The prevalence of RET Y791F in the control databases was extremely high compared with the 40 known RET pathogenic mutations (P=0.00003), while no somatic occurrence has been reported in tumours. In this study, we report new, unrelated Brazilian individuals with germline RET Y791F-only: two tumour-free elderly controls; two individuals with sporadic MTC whose Y791F-carrying relatives did not show any evidence of tumours; and a 74-year-old phaeochromocytoma patient without MTC. Furthermore, we showed that the co-occurrence of Y791F with the strong RET C634Y mutation explains the aggressive MTC phenotypes observed in a large affected family that was initially reported as Y791F-only. Our literature review revealed that limited analyses have led to the misclassification of RET Y791F as a probable pathogenic variant and, consequently, to the occurrence of unnecessary thyroidectomies. The current study will have a substantial clinical influence, as it reveals, in a comprehensive manner, that RET Y791F only shows no association with MTC susceptibility.

Open access

Roland Pfoh, Ira Kay Lacdao, and Vivian Saridakis

Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure–function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.

Open access

G Azizi, J M Keller, M Lewis, K Piper, D Puett, K M Rivenbark, and C D Malchoff

This prospective study investigates the relationship between Hashimoto's thyroiditis (HT) and thyroid cancer (TC) in patients with thyroid nodules (TNs). We prospectively examined 2100 patients with 2753 TNs between January 5, 2010 and August 15, 2013. A total of 2023 patients with 2669 TNs met the inclusion criteria of TN ≥5 mm and age ≥18 years. Each patient had blood drawn before fine-needle aspiration biopsy (FNAB) for the following measurements: TSH, free thyroxine, free tri-iodothyronine, thyroid peroxidase antibody (TPOAb), and antithyroglobulin antibody (TgAb). Diagnosis of TC was based on pathology analysis of thyroidectomy tissue. The associations of TC with the independent variables were determined by univariate and multivariate logistic regression analysis and reported as adjusted odds ratio (OR) with 95% CI. A total of 248 malignant nodules were found in 233 patients. There was an association of TC with both increased serum TgAb concentration and age<45 years. An elevated serum TgAb concentration was found in 10.2% of patients (182 of 1790) with benign nodules as compared with 20.6% of patients (48 of 233) with malignant nodules (P≤0.0001). TgAb (OR=2.24: CI=1.57, 3.19) and TSH ≥1 μIU/ml (OR (95% CI)) OR: 1.49 (1.09, 2.03) were significant predictors of TC in multivariate analysis controlling for age and gender. TC was not associated with serum concentrations of TPOAb. In patients with TN, elevated serum concentration of TgAb and TSH ≥1 μIU/ml are independent predictors for TC. The association between HT and TC is antibody specific.

Open access

Varinder Jeet, Gregor Tevz, Melanie Lehman, Brett Hollier, and Colleen Nelson

Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa.

Open access

Tiantian Liu, Taylor C Brown, C Christofer Juhlin, Adam Andreasson, Na Wang, Martin Bäckdahl, James M Healy, Manju L Prasad, Reju Korah, Tobias Carling, Dawei Xu, and Catharina Larsson

The telomerase reverse transcriptase gene (TERT) encodes the reverse transcriptase component of the telomerase complex, which is essential for telomere stabilization and cell immortalization. Recent studies have demonstrated a transcriptional activation role for the TERT promoter mutations C228T and C250T in many human cancers, as well as a role in aggressive disease with potential clinical applications. Although telomerase activation is known in adrenal tumors, the underlying mechanisms are not established. We assessed C228T and C250T TERT mutations by direct Sanger sequencing in tumors of the adrenal gland, and further evaluated potential associations with clinical parameters and telomerase activation. A total of 199 tumors were evaluated, including 34 adrenocortical carcinomas (ACC), 47 adrenocortical adenomas (ACA), 105 pheochromocytomas (PCC; ten malignant and 95 benign), and 13 abdominal paragangliomas (PGL; nine malignant and four benign). TERT expression levels were determined by quantitative RT-PCR. The C228T mutation was detected in 4/34 ACCs (12%), but not in any ACA (P=0.028). C228T was also observed in one benign PCC and in one metastatic PGL. The C250T mutation was not observed in any case. In the ACC and PGL groups, TERT mutation-positive cases exhibited TERT expression, indicating telomerase activation; however, since expression was also revealed in TERT WT cases, this could denote additional mechanisms of TERT activation. To conclude, the TERT promoter mutation C228T is a recurrent event associated with TERT expression in ACCs, but rarely occurs in PGL and PCC. The involvement of the TERT gene in ACC represents a novel mutated gene in this entity.