Browse

You are looking at 31 - 40 of 1,991 items for

  • User-accessible content x
Clear All
Restricted access

Feng Wu, Fuxingzi Li, Xiao Lin, Feng Xu, Rong-Rong Cui, Jia-Yu Zhong, Ting Zhu, Su-Kang Shan, Xiao-Bo Liao, Ling-Qing Yuan and Zhao-Hui Mo

Tumour-derived exosomes under hypoxic conditions contain informative miRNAs involved in the interaction of cancer and para-carcinoma cells, thus contributing to tissue remodelling of the tumour microenvironment (TME). Exosomes isolated from hypoxic papillary thyroid cancer cells, BCPAP cells and KTC-1 cells enhanced the angiogenesis of human umbilical vein endothelial cells (HUVECs) compared with exosomes isolated from normal thyroid follicular cell line (Nthy-ori-3-1), normoxic BCPAP or KTC-1 cells both in vitro and in vivo. miR-21-5p was significantly upregulated in exosomes from papillary thyroid cancer BCPAP cells under hypoxic conditions, while the exosomes isolated from hypoxic BCPAP cells with knockdown of miR-21-5p attenuated the promoting effect of angiogenesis. In addition, our experiment revealed that miR-21-5p directly targeted and suppressed TGFBI and COL4A1, thereby increasing endothelial tube formation. Furthermore, elevated levels of exosomal miR-21-5p are found in the sera of papillary thyroid cancer patients, which promote the angiogenesis of HUVECs. Taken together, our study reveals the cell interaction between hypoxic papillary thyroid cancer cells and endothelial cells, elucidating a new mechanism by which hypoxic papillary thyroid cancer cells increase angiogenesis via exosomal miR-21-5p/TGFBI and miR-21-5p/COL4A1 regulatory pathway.

Restricted access

Joakim Crona, Angela Lamarca, Suman Ghosal, Staffan Welin, Britt Skogseid and Karel Pacak

Pheochromocytoma and paraganglioma (PPGL) can be divided into at least four molecular subgroups. Whether such categorizations are independent factors for prognosis or metastatic disease is unknown. We performed a systematic review and individual patient meta-analysis aiming to estimate if driver mutation status can predict metastatic disease and survival. Driver mutations were used to categorize patients according to three different molecular systems: two subgroups (SDHB mutated or wild type), three subgroups (pseudohypoxia, kinase signaling or Wnt/unknown) and four subgroups (tricarboxylic acid cycle, VHL/EPAS1, kinase signaling or Wnt/unknown). Twenty-one studies and 703 patients were analyzed. Multivariate models for association with metastasis showed correlation with SDHB mutation (OR 5.68 (95% CI 1.79–18.06)) as well as norepinephrine (OR 3.01 (95% CI 1.02–8.79)) and dopamine (OR 6.39 (95% CI 1.62–25.24)) but not to PPGL location. Other molecular systems were not associated with metastasis. In multivariate models for association with survival, age (HR 1.04 (95% CI 1.02–1.06)) and metastases (HR 6.13 (95% CI 2.86–13.13)) but neither paraganglioma nor SDHB mutation remained significant. Other molecular subgroups did not correlate with survival. We conclude that molecular categorization accordingly to SDHB provided independent information on the risk of metastasis. Driver mutations status did not correlate independently with survival. These data may ultimately be used to guide current and future risk stratification of PPGL.

Free access

Rayzel C Fernandes, Theresa E Hickey, Wayne D Tilley and Luke A Selth

The androgen receptor (AR) is a ligand-activated transcription factor that drives prostate cancer. Since therapies that target the AR are the mainstay treatment for men with metastatic disease, it is essential to understand the molecular mechanisms underlying oncogenic AR signaling in the prostate. miRNAs are small, non-coding regulators of gene expression that play a key role in prostate cancer and are increasingly recognized as targets or modulators of the AR signaling axis. In this review, we examine the regulation of AR signaling by miRNAs and vice versa and discuss how this interplay influences prostate cancer growth, metastasis and resistance to therapy. Finally, we explore the potential clinical applications of miRNAs implicated in the regulation of AR signaling in this prevalent hormone-driven disease.

Restricted access

María Andrea Camilletti, Alejandra Abeledo-Machado, Pablo A Perez, Erika Y Faraoni, Fernanda De Fino, Susana B Rulli, Jimena Ferraris, Daniel Pisera, Silvina Gutierrez, Peter Thomas and Graciela Díaz-Torga

Membrane progesterone receptors are known to mediate rapid nongenomic progesterone effects in different cell types. Recent evidence revealed that mPRα is highly expressed in the rat pituitary, being primarily localized in lactotrophs, acting as an intermediary of P4-inhibitory actions on prolactin secretion. The role of mPRs in prolactinoma development remains unclear. We hypothesize that mPR agonists represent a novel tool for hyperprolactinemia treatment. To this end, pituitary expression of mPRs was studied in three animal models of prolactinoma. Expression of mPRs and nuclear receptor was significantly decreased in tumoral pituitaries compared to normal ones. However, the relative proportion of mPRα and mPRβ was highly increased in prolactinomas. Interestingly, the selective mPR agonist (Org OD 02-0) significantly inhibited PRL release in both normal and tumoral pituitary explants, displaying a more pronounced effect in tumoral tissues. As P4 also regulates PRL secretion indirectly, by acting on dopaminergic neurons, we studied mPR involvement in this effect. We found that the hypothalamus has a high expression of mPRs. Interestingly, both P4 and OrgOD 02-0 increased dopamine release in hypothalamus explants. Moreover, in an in vivo treatment, that allows both, pituitary and hypothalamus actions, the mPR agonist strongly reduced the hyperprolactinemia in transgenic females carrying prolactinoma. Finally, we also found and interesting gender difference: males express higher levels of pituitary mPRα/β, a sex that does not develop prolactinoma in these mice models. Taken together, these findings suggest mPRs activation could represent a novel tool for hyperprolactinemic patients, especially those that present resistance to dopaminergic drugs.

Free access

Pedro Weslley Rosario and Gabriela Franco Mourão

Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) is an encapsulated or clearly delimited, noninvasive neoplasm with a follicular growth pattern and nuclear features of papillary thyroid carcinoma (PTC). It is considered a ‘pre-malignant’ lesion of the RAS-like group. Ultrasonography (US), cytology and molecular tests are useful to suspect thyroid nodules that correspond to NIFTP but there is wide overlap of the results with the encapsulated follicular variant of PTC (E-FVPTC). In these nodules that possibly or likely correspond to NIFTP, if surgery is indicated, lobectomy is favored over total thyroidectomy. The diagnosis of NIFTP is made after complete resection of the lesion by observing well-defined criteria. In the case of patients who received the diagnosis of FVPTC and whose pathology report does not show findings of malignancy (lymph node metastasis, extrathyroidal invasion, vascular/capsular invasion), if the tumor was encapsulated or well delimited, the slides can be revised by an experienced pathologist to determine whether the diagnostic criteria of NIFTP are met, but special attention must be paid to the adequate representativeness of the capsule and tumor. Since NIFTP is not ‘malignant’, tumor staging is not necessary and patients are not submitted to thyroid cancer protocols or guidelines. We believe that patients with NIFTP without associated malignancy and without nodules detected by US of the remnant lobe (if submitted to lobectomy) can be managed like those with follicular adenoma.

Restricted access

Raquel Santana da Cruz, Johan Clarke, Ana Cristina P Curi, Aseel Al-Yawar, Lu Jin, Ali Baird, M Idalia Cruz, Bhaskar Kallakury and Sonia de Assis

Epidemiological studies suggest that timing of obesity onset – and underlying metabolic dysfunction – is important in determining pancreatic cancer rates: early and young adult abdominal overweight/obesity is more strongly associated with this cancer than obesity that develops later in life. Parental obesity and overweight are associated with metabolic dysfunction and obesity in their children. Here, we evaluated the impact of parental overweight on offspring’s susceptibility of pancreatic cancer using the P48Cre/+/KrasG12D/+ mouse model. Male mice were fed an obesity-inducing diet (OID) before conception and mated with females raised on a control diet (CO) to generate the offspring. In a separate experiment, pregnant dams were fed CO or OID throughout gestation. The resulting OID offspring from the maternal (OID-m) or paternal lineage (OID-p) were used to study body weight, metabolic parameters and pancreatic cancer development and for molecular analysis. Parental obesity increased offspring’s body weight at birth, weaning and in adulthood compared to CO, with gender- and genotype-specific differences. OID-p and OID-m offspring showed metabolic disorder and accelerated development of high-grade PanIN/PDAC. OID offspring also had higher rates of acinar-to-ductal reprogramming assessed by CPA1+/SOX9+-positive pancreatic cells. Levels of Tenascin C (TNC), an ECM glycoprotein shown to suppress apoptosis, were elevated in OID offspring, particularly females. In line with that, OID offspring displayed increased collagen content and decreased apoptosis in pancreatic lesions compared to CO. An ancestral history of obesity through either the paternal or maternal lineages increases offspring’s susceptibility to pancreatic cancer development.

Restricted access

Marie Colombe Agahozo, Anieta M Sieuwerts, S Charlane Doebar, Esther I Verhoef, Corine M Beaufort, Kirsten Ruigrok-Ritstier, Vanja de Weerd, Hein F B M Sleddens, Winand N M Dinjens, John W M Martens and Carolien H M van Deurzen

PIK3CA is one of the most frequently mutated genes in invasive breast cancer (IBC). These mutations are generally associated with hyper-activation of the phosphatidylinositol 3-kinase signaling pathway, which involves increased phosphorylation of AKT (p-AKT). This pathway is negatively regulated by the tumor suppressor PTEN. Data are limited regarding the variant allele frequency (VAF) of PIK3CA, PTEN and p-AKT expression during various stages of breast carcinogenesis. Therefore, the aim of this study was to gain insight into PIK3CA VAF and associated PTEN and p-AKT expression during the progression from ductal carcinoma in situ (DCIS) to IBC. We isolated DNA from DCIS tissue, synchronous IBC and metastasis when present. These samples were pre-screened for PIK3CA hotspot mutations using the SNaPshot assay and, if positive, validated and quantified by digital PCR. PTEN and p-AKT expression was evaluated by immunohistochemistry using the Histo-score (H-score). Differences in PIK3CA VAF, PTEN and p-AKT H-scores between DCIS and IBC were analyzed. PIK3CA mutations were detected in 17 out of 73 DCIS samples, 16 out of 73 IBC samples and 3 out of 23 lymph node metastasis. We detected a significantly higher VAF of PIK3CA in the DCIS component compared to the adjacent IBC component (P = 0.007). The expression of PTEN was significantly higher in DCIS compared to the IBC component in cases with a wild-type (WT) PIK3CA status (P = 0.007), while it remained similar in both components when PIK3CA was mutated. There was no difference in p-AKT expression between DCIS and the IBC component. In conclusion, our data suggest that PIK3CA mutations could be essential specifically in early stages of breast carcinogenesis. In addition, these mutations do not co-occur with PTEN expression during DCIS progression to IBC in the majority of patients. These results may contribute to further unraveling the process of breast carcinogenesis, and this could aid in the development of patient-specific treatment.

Open access

Tobias Hofving, Viktor Sandblom, Yvonne Arvidsson, Emman Shubbar, Gülay Altiparmak, John Swanpalmer, Bilal Almobarak, Anna-Karin Elf, Viktor Johanson, Erik Elias, Erik Kristiansson, Eva Forssell-Aronsson and Ola Nilsson

177Lu-octreotate is an FDA-approved radionuclide therapy for patients with gastroenteropancreatic neuroendocrine tumours (NETs) expressing somatostatin receptors. The 177Lu-octreotate therapy has shown promising results in clinical trials by prolonging progression-free survival, but complete responses are still uncommon. The aim of this study was to improve the 177Lu-octreotate therapy by means of combination therapy. To identify radiosensitising inhibitors, two cell lines, GOT1 and P-STS, derived from small intestinal neuroendocrine tumours (SINETs), were screened with 1224 inhibitors alone or in combination with external radiation. The screening revealed that inhibitors of Hsp90 can potentiate the tumour cell-killing effect of radiation in a synergistic fashion (GOT1; false discovery rate <3.2 × 10−11). The potential for Hsp90 inhibitor ganetespib to enhance the anti-tumour effect of 177Lu-octreotate in an in vivo setting was studied in the somatostatin receptor-expressing GOT1 xenograft model. The combination led to a larger decrease in tumour volume relative to monotherapies and the tumour-reducing effect was shown to be synergistic. Using patient-derived tumour cells from eight metastatic SINETs, we could show that ganetespib enhanced the effect of 177Lu-octreotate therapy for all investigated patient tumours. Levels of Hsp90 protein expression were evaluated in 767 SINETs from 379 patients. We found that Hsp90 expression was upregulated in tumour cells relative to tumour stroma in the vast majority of SINETs. We conclude that Hsp90 inhibitors enhance the tumour-killing effect of 177Lu-octreotate therapy synergistically in SINET tumour models and suggest that this potentially promising combination should be further evaluated.

Restricted access

Ornella Affinito, Paolo Salerno, Alfonso D’Alessio, Mariella Cuomo, Ermanno Florio, Francesca Carlomagno, Agnese Proietti, Riccardo Giannini, Fulvio Basolo, Lorenzo Chiariotti, Sergio Cocozza and Massimo Santoro

Molecular differentiation between benign (follicular thyroid adenoma (FTA)) and malignant (follicular thyroid carcinoma (FTC)) thyroid neoplasms is challenging. Here, we explored the genome-wide DNA methylation profile of FTA (n.10) and FTC (n.11) compared to normal thyroid (NT) (n.7) tissues. FTC featured 3564 differentially methylated CpGs (DMCpG), most (84%) of them hypermethylated, with respect to normal controls. At the principal component analysis (PCA), the methylation profile of FTA occupied an intermediate position between FTC and normal tissue. A large fraction (n. 2385) of FTC-associated DMCpG was related (intragenic or within 1500 bp from the transcription start site) to annotated genes (n. 1786). FTC-hypermethylated genes were enriched for targets of the Polycomb transcriptional repressor complex and the specific histone H3 marks (H3K4me2/me3-H3K27me3) found in chromatin domains known as ‘bivalent’. Transcriptome profiling by RNAseq showed that 7.9% of the DMCpGs-associated genes were differentially expressed in FTC compared to NT, suggesting that altered DNA methylation may contribute to their altered expression. Overall, this study suggests that perturbed DNA methylation, in particular hypermethylation, is a component of the molecular mechanisms leading to the formation of FTC and that DNA methylation profiling may help differentiating FTCs from their benign counterpart.

Free access

Peder Rustøen Braadland and Alfonso Urbanucci

Tumor evolution is based on the ability to constantly mutate and activate different pathways under the selective pressure of targeted therapies. Epigenetic alterations including those of the chromatin structure are associated with tumor initiation, progression and drug resistance. Many cancers, including prostate cancer, present enlarged nuclei, and chromatin appears altered and irregular. These phenotypic changes are likely to result from epigenetic dysregulation. High-throughput sequencing applied to bulk samples and now to single cells has made it possible to study these processes in unprecedented detail. It is therefore timely to review the impact of chromatin relaxation and increased DNA accessibility on prostate cancer growth and drug resistance, and their effects on gene expression. In particular, we focus on the contribution of chromatin-associated proteins such as the bromodomain-containing proteins to chromatin relaxation. We discuss the consequence of this for androgen receptor transcriptional activity and briefly summarize wider gain-of-function effects on other oncogenic transcription factors and implications for more effective prostate cancer treatment.