Browse

You are looking at 61 - 70 of 1,992 items for

  • User-accessible content x
Clear All
Restricted access

Fei Han, Wen-bin Liu, Jian-jun Li, Ming-qian Zhang, Jun-tang Yang, Xi Zhang, Xiang-lin Hao, Li Yin, Cheng-yi Mao, Xiao Jiang, Jia Cao and Jin-yi Liu

New potential biomarkers and therapeutic targets for ovarian cancer should be identified. The amplification in chromosomal region 5q31–5q35.3 exhibits the strongest correlation with overall survival (OS) of ovarian cancer. SOX30 coincidentally located at this chromosomal region has been determined as a new important tumor suppressor. However, the prognostic value, role and mechanism of SOX30 in ovarian cancer are unexplored. Here, we reveal that SOX30 is frequently overexpressed in ovarian cancer tissues and is associated with clinical stage and metastasis of ovarian cancer patients. High SOX30 expression predicts better OS and acts as an independent prognostic factor in advanced-stage patients, but is not associated with OS in early-stage patients. Based on the survival analyses, the advanced-stage patients with high SOX30 expression can receive platin- and/or taxol-based chemotherapy, whereas they should not receive chemotherapy containing gemcitabine or topotecan. Functionally, SOX30 strongly inhibits tumor cell migration and invasion in intro and suppresses tumor metastasis in vivo. SOX30 regulates some markers (E-CADHERIN, FIBRONECTIN, N-CADHERIN and VIMENTIN) and prevents the characteristics of epithelial–mesenchymal transition (EMT). SOX30 transcriptionally regulates the expression of E-CADHERIN, FIBRONECTIN and N-CADHERIN by binding to their promoters. Restoration of E-CADHERIN and/or N-CADHERIN when overexpressing SOX30 significantly reduces the anti-metastatic role of SOX30. Indeed, chemotherapy treatment containing platin or gemcitabine combined with SOX30 expression influences tumor cell metastasis and the survival of nude mice differently, which is closely associated with EMT. In conclusion, SOX30 antagonizes tumor metastasis by preventing EMT process that can be used to predict survival and incorporated into chemotherapeutics of advanced-stage ovarian cancer patients.

Restricted access

Willem E Corver and Hans Morreau

Free access

Giorgio Secreto, Alessandro Girombelli and Vittorio Krogh

The aim of this review is to highlight the pivotal role of androgen excess in the development of breast cancer. Available evidence suggests that testosterone controls breast epithelial growth through a balanced interaction between its two active metabolites: cell proliferation is promoted by estradiol while it is inhibited by dihydrotestosterone. A chronic overproduction of testosterone (e.g. ovarian stromal hyperplasia) results in an increased estrogen production and cell proliferation that are no longer counterbalanced by dihydrotestosterone. This shift in the androgen/estrogen balance partakes in the genesis of ER-positive tumors. The mammary gland is a modified apocrine gland, a fact rarely considered in breast carcinogenesis. When stimulated by androgens, apocrine cells synthesize epidermal growth factor (EGF) that triggers the ErbB family receptors. These include the EGF receptor and the human epithelial growth factor 2, both well known for stimulating cellular proliferation. As a result, an excessive production of androgens is capable of directly stimulating growth in apocrine and apocrine-like tumors, a subset of ER-negative/AR-positive tumors. The key role of androgen excess in the genesis of different subtypes of breast cancer has significant clinical implications for both treatment and prevention. Our belief stems from a thorough analysis of the literature, where an abundance of evidence is present to justify a clinical trial that would investigate the effectiveness of treating the underlying excessive androgen production.

Restricted access

Ji Won Kim, Dharmendra K Yadav, Soo Jin Kim, Moo-Yeol Lee, Jung-Min Park, Bum Seok Kim, Mi-hyun Kim, Hyeung-geun Park and Keon Wook Kang

GV1001, a 16-amino acid fragment of the human telomerase reverse transcriptase catalytic subunit (hTERT), has been developed as an injectable formulation of cancer vaccine. Here, we revealed for the first time that GV1001 is a novel ligand for gonadotropin-releasing hormone receptor (GnRHR). The docking prediction for GV1001 against GnRHR showed high binding affinity. Binding of GV1001 to GnRHR stimulated the Gαs-coupled cAMP signaling pathway and antagonized Gαq-coupled Ca2+ release by leuprolide acetate (LA), a GnRHR agonist. Repeated injection of GV1001 attenuated both serum testosterone level and seminal vesicle weight via desensitization of hypothalamic–pituitary–gonadal (HPG) axis. We then tested whether GV1001 has an inhibitory effect on tumor growth of LNCaP cells, androgen receptor–positive human prostate cancer (PCa) cells. GV1001 significantly inhibited tumor growth and induced apoptosis in LNCaP-implanted xenografts. Interestingly, mRNA expressions of matrix metalloproteinase 2 and matrix metalloproteinase 9 were suppressed by GV1001, but not by LA. Moreover, GV1001 significantly inhibited the proliferation and migration of PCa cells and induced apoptosis in a concentration-dependent manner. Our findings suggest that GV1001 functions as a biased GnRHR ligand to selectively stimulate the Gαs/cAMP pathway, with anti-proliferative and anti-migratory effects on human PCa.

Open access

Dawei Wu, Dongwei Lv, Ting Zhang, Lianying Guo, Fangli Ma, Caihua Zhang, Guofeng Lv and Lin Huang

Ewing sarcoma family tumors (ESFTs) are a group of aggressive and highly metastatic tumors lacking efficient therapies. Insulin-like growth factor 1 receptor (IGF1R) blockade is one of the most efficient targeting therapy for ESFTs. However, the appliance is obstructed by drug resistance and disease recurrence due to the activation of insulin receptor (IR) signaling induced by IGF1R blockade. Herein β-elemene, a compound derived from natural plants, exhibited a remarkable proliferation repression on ESFT cells, which was weakened by a caspase inhibitor Z-VAD. β-elemene in combination with IGF1R inhibitors enhanced markedly the repression on cellular proliferation and mTOR activation by IGF1R inhibitors and suppressed the PI3K phosphorylation induced by IGF1R inhibitors. To investigate the mechanisms, we focused on the effects of β-elemene on IR signaling pathway. β-elemene significantly suppressed the insulin-driven cell growth and the activation of mTOR and PI3K in tumor cells, while the toxicity to normal hepatocytes was much lower. Further, the phosphorylation of IR was found to be suppressed notably by β-elemene specifically in tumor cells other than normal hepatocytes. In addition, β-elemene inhibited the growth of ESFT xenografts in vivo, and the phosphorylation of IR and S6 ribosomal protein was significantly repressed in the β-elemene-treated xenografts. These data suggest that β-elemene targets IR phosphorylation to inhibit the proliferation of tumor cells specifically and enhance the effects of IGF1R inhibitors. Thus, this study provides evidence for novel approaches by β-elemene alone or in combination with IGF1R blockades in ESFTs and IR signaling hyperactivated tumors.

Free access

G Mantovani, D Treppiedi, E Giardino, R Catalano, F Mangili, P Vercesi, M Arosio, A Spada and E Peverelli

Although generally benign, pituitary tumors are frequently locally invasive, with reduced success of neurosurgery and unresponsive to pharmacological treatment with somatostatin or dopamine analogues. The molecular basis of the different biological behavior of pituitary tumors are still poorly identified, but a body of work now suggests that the activity of specific cytoskeleton proteins is a key factor regulating both the invasiveness and drug resistance of these tumors. This review recapitulates the experimental evidence supporting a role for the actin-binding protein filamin A (FLNA) in the regulation of somatostatin and dopamine receptors expression and signaling in pituitary tumors, thus in determining the responsiveness to currently used drugs, somatostatin analogues and dopamine receptor type 2 agonists. Regarding the regulation of invasive behavior of pituitary tumoral cells, we bring evidence to the role of the actin-severing protein cofilin, whose activation status may be modulated by dopaminergic and somatostatinergic drugs, through FLNA involvement. Molecular mechanisms involved in the regulation of FLNA expression and function in pituitary tumors will also be discussed.

Open access

F Castinetti, F Albarel, F Archambeaud, J Bertherat, B Bouillet, P Buffier, C Briet, B Cariou, Ph Caron, O Chabre, Ph Chanson, C Cortet, C Do Cao, D Drui, M Haissaguerre, S Hescot, F Illouz, E Kuhn, N Lahlou, E Merlen, V Raverot, S Smati, B Verges and F Borson-Chazot

The management of cancer patients has changed due to the considerably more frequent use of immune checkpoint inhibitors (ICPIs). However, the use of ICPI has a risk of side effects, particularly endocrine toxicity. Since the indications for ICPI are constantly expanding due to their efficacy, it is important that endocrinologists and oncologists know how to look for this type of toxicity and how to treat it when it arises. In view of this, the French Endocrine Society initiated the formulation of a consensus document on ICPI-related endocrine toxicity. In this paper, we will introduce data on the general pathophysiology of endocrine toxicity, and we will then outline expert opinion focusing primarily on methods for screening, management and monitoring for endocrine side effects in patients treated by ICPI. We will then look in turn at endocrinopathies that are induced by ICPI including dysthyroidism, hypophysitis, primary adrenal insufficiency and fulminant diabetes. In each chapter, expert opinion will be given on the diagnosis, management and monitoring for each complication. These expert opinions will also discuss the methodology for categorizing these side effects in oncology using ‘common terminology criteria for adverse events’ (CTCAE) and the difficulties in applying this to endocrine side effects in the case of these anti-cancer therapies. This is shown in particular by certain recommendations that are used for other side effects (high-dose corticosteroids, contraindicated in ICPI for example) and that cannot be considered as appropriate in the management of endocrine toxicity, as it usually does not require ICPI withdrawal or high-dose glucocorticoid intake.

Open access

Sung Gwe Ahn, Chang Ik Yoon, Jae Hoon Lee, Hye Sun Lee, So Eun Park, Yoon Jin Cha, Chihwan Cha, Soong June Bae, Kyung-A Lee and Joon Jeong

On the basis of TP53 mutations and standardized uptake values (SUVs) from 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET), we sought to enhance our knowledge of the biology underlying low progesterone receptor (PR) expression in estrogen receptor (ER)-positive/human epidermal growth factor receptor-2 (HER2)-negative tumors. This study included 272 patients surgically treated for ER-positive, HER2-negative breast cancer and who had undergone TP53 gene sequencing. Of these, 229 patients also underwent 18F-FDG PET or PET/CT. Mutational analysis of exons 5–9 of the TP53 gene was conducted using PCR amplification and direct sequencing. The SUVs were measured using 18F-FDG-PET scan images. Twenty-eight (10.3%) tumors had a somatic TP53 mutation. The TP53 mutation rate was significantly higher in low-PR tumors than in high-PR tumors (17.1% vs 7.9%, P = 0.039). Low-PR tumors had significantly higher median SUVs than high-PR tumors (P = 0.046). The multivariable analysis revealed that SUV and age remained independent variables associated with low PR expression. An adverse impact of low PR expression on recurrence-free survival was observed in the multivariable Cox regression hazard model. We provide clinical evidence that genetic alteration of the TP53 gene and dysregulated glucose metabolism partly involve low PR expression in ER-positive and HER2-negative breast cancer.

Restricted access

Charline Dubois, Natacha Rocks, Silvia Blacher, Irina Primac, Anne Gallez, Melissa García-Caballero, Céline Gérard, Laurent Brouchet, Agnès Noël, Françoise Lenfant, Didier Cataldo and Christel Pequeux

Oestrogen signalling pathways are emerging targets for lung cancer therapy. Unravelling the contribution of oestrogens in lung cancer development is a pre-requisite to support the development of sex-based treatments and identify patients who could potentially benefit from anti-oestrogen treatments. In this study, we highlight the contribution of lymphatic and blood endothelia in the sex-dependent modulation of lung cancer. The orthotopic graft of syngeneic lung cancer cells into immunocompetent mice showed that lung tumours grow faster in female mice than in males. Moreover, oestradiol (E2) promoted tumour development, increased lymph/angiogenesis and VEGFA and bFGF levels in lung tumours of females through an oestrogen receptor (ER) alpha-dependent pathway. Furthermore, while treatment with ERb antagonist was inefficient, ERa antagonist (MPP) and tamoxifen decreased lung tumour volumes, altered blood and lymphatic vasculature and reduced VEGFA and bFGF levels in females, but not in males. Finally, the quantification of lymphatic and blood vasculature of lung adenocarcinoma biopsies from patients aged between 35 and 55 years revealed more extensive lymphangiogenesis and angiogenesis in tumour samples issued from women than from men. In conclusion, our findings highlight an E2/ERa-dependent modulation of lymphatic and blood vascular components of lung tumour microenvironment. Our study has potential clinical implication in a personalised medicine perspective by pointing to the importance of oestrogen status or supplementation on lung cancer development that should be considered to adapt therapeutic strategies.

Free access

Kelly Brewer, Jessica Costa-Guda and Andrew Arnold

Primary hyperparathyroidism (PHPT) is a common endocrine disorder characterized by dysregulation of parathyroid hormone release. The large majority of PHPT cases are attributable to sporadic, single-gland parathyroid adenoma, in which MEN1 and CCND1/cyclin D1 are the most well-established drivers of tumorigenesis. Sporadic parathyroid carcinoma, which appears to mostly arise through molecular pathways distinct from those causing benign parathyroid tumors, is rare and is most frequently driven by mutational inactivation of the CDC73 (HRPT2) tumor suppressor gene. Targeted investigation of suspected tumor driver genes, as well as unbiased whole-genome or exome sequencing of small cohorts, have revealed additional novel candidate tumor genes in sporadic parathyroid neoplasia, generally at modest or low mutational frequencies consistent with marked molecular genetic heterogeneity from tumor to tumor. The ability of these additional candidates to participate in the pathogenic process of driving parathyroid tumorigenesis in vivo largely remains to be demonstrated experimentally. This review will summarize the molecular genetic abnormalities identified to date in sporadic PHPT and discuss the strength of evidence for their proposed roles in parathyroid tumor formation.