You are looking at 151 - 160 of 2,304 items for

  • All content x
Clear All
Free access

Wei Zhang, Hang Zhang, and Xudong Zhao

Papillary thyroid carcinoma (PTC) is one of the most prevalent tumors in endocrine system. CircRNAs (circular RNAs) are widely known as critical regulators in tumorigenesis of papillary thyroid carcinoma (PTC). The present study focused on the functional investigation and potential molecular mechanism toward circ_0005273 in PTC progression. Gene Expression Omnibus datasets (GSE93522) and qRT-PCR (quantitative real-time PCR) analyses showed that circ_0005273 were upregulated in PTC tissues and cell lines. Moreover, circ_0005273 was located in the cytoplasm of PTC cells and suggested poor prognosis in PTC patients. In vivo and in vitro functional assays indicated that knockdown of circ_0005273 inhibited PTC tumor growth and progression, respectively. Mechanistically, miR-1183 was identified as functional target of circ_0005273, and circ_0005273 could directly bind to miR-1138 and relieve inhibition of SRY (sex-determining region Y)-box 2 (SOX2). Data from Cell Counting Kit-8, colony formation assays and transwell assays revealed that the oncogenic role of circ_0005273 on PTC progression dependent on miR-1183-mediated SOX2 expression. In conclusion, circ_0005273 functioned as a tumor promoter of PTC via circ_0005273/miR-1183/SOX2 axis, suggesting a novel biomarker and therapeutic target for PTC.

Free access

Anna Angelousi, Krystallenia I Alexandraki, George Kyriakopoulos, Marina Tsoli, Dimitrios Thomas, Gregory Kaltsas, and Ashley Grossman

Endocrine organs are metastatic targets for several primary cancers, either through direct extension from nearby tumour cells or dissemination via the venous, arterial and lymphatic routes. Although any endocrine tissue can be affected, most clinically relevant metastases involve the pituitary and adrenal glands with the commonest manifestations being diabetes insipidus and adrenal insufficiency respectively. The most common primary tumours metastasing to the adrenals include melanomas, breast and lung carcinomas, which may lead to adrenal insufficiency in the presence of bilateral adrenal involvement. Breast and lung cancers are the most common primaries metastasing to the pituitary, leading to pituitary dysfunction in approximately 30% of cases. The thyroid gland can be affected by renal, colorectal, lung and breast carcinomas, and melanomas, but has rarely been associated with thyroid dysfunction. Pancreatic metastasis can lead to exo-/endocrine insufficiency with renal carcinoma being the most common primary. Most parathyroid metastases originate from breast and lung carcinomas and melanoma. Breast and colorectal cancers are the most frequent ovarian metastases; prostate cancer commonly affects the testes. In the presence of endocrine deficiencies, glucocorticoid replacement for adrenal and pituitary involvement can be life saving. As most metastases to endocrine organs develop in the context of disseminated disease, surgical resection or other local therapies should only be considered to ameliorate symptoms and reduce tumour volume. Although few consensus statements can be made regarding the management of metastases to endocrine tissues because of the heterogeneity of the variable therapies, it is important that clinicians are aware of their presence in diagnosis.

Free access

Veronica R Placencio-Hickok, Anisha Madhav, Sungjin Kim, Frank Duong, Bryan Angara, Zhenqiu Liu, and Neil A Bhowmick

While the overall 5-year survival rate for prostate cancer is near 100%, up to 35% of patients will develop recurrent disease. At the time of prostatectomy, prostate-specific antigen (PSA) is used to guide primary therapy with the goal of curative intervention. It can be valuable to know when primary therapy may not in fact be curative, so that subsequent adjuvant therapy can be administered at an early stage to limit progression. We examined prostate cancer patients with PSA ≤10 ng/mL that were all subjected to prostatectomy with at least 5 years of follow-up (n = 181). Based on data that endoglin (CD105) signaling in the tumor can contribute to prostate cancer progression, we examined the expression of soluble CD105 (sCD105) in the patient plasma. To determine the relation of plasma sCD105 measures to cellular CD105 in tissues, we tested an independent set of prostate cancer tissues and paired plasma (n = 31). Elevated sCD105 was found to be associated with recurrence-free survival of prostate cancer patients. Further, sCD105 levels in patient plasma were inversely correlated with cellular CD105 expression. This translational study supported preclinical data demonstrating the pro-tumorigenic capacity of cellular CD105 and provide a blood-based biomarker, sCD105, for prostate cancer recurrence in prostatectomy patients with PSA levels ≤10 ng/mL.

Free access

Yuling Mao, Liuqing Zhu, Zhijian Huang, Chuanghua Luo, Ti Zhou, Lei Li, Guannan Wang, Zhonghan Yang, Weiwei Qi, Xia Yang, and Guoquan Gao

Sorafenib, a small-molecule tyrosine kinase inhibitor with antiangiogenic activity, has been used in liver cancer and kidney cancer treatments. However, clinical trials with sorafenib for breast cancer were stopped in phase III due to limited efficacy. The existence of heterogeneous vasculatures involving tumor cells, such as vessel-like structures formed by vasculogenic mimicry and mosaic vessels, and their resistance to antiangiogenic therapy are thought to be a possible reason for failure of sorafenib therapy. Nevertheless, the features and mechanism of vasculogenesis by tumor cells remain unclear. In the present study, we found that breast cancer stem-like cells (BCSLCs, ALDH1+ cells) were involved in vasculogenic mimicry and mosaic vessel formation in triple-negative breast cancer tissues. Further, only ALDH1+ BCSLCs sorted from MDA-MB-231 could exhibit the tube formation and angiogenesis ability. Sorafenib could inhibit vascularization from endothelial cells rather than that from ALDH1+ cells. α-SMA was identified as a key molecule in vascular formation of BCSLCs. Mechanistically, HIF-1α enhanced the mRNA and protein levels of α-SMA by binding to the HRE element in the promoter directly and meanwhile increased the BCSLCs population. Interestingly, pigment epithelium-derived factor (PEDF), an endogenous angiogenesis inhibitor, could inhibit both endothelial cell-derived and tumor cell-derived angiogenesis by downregulating HIF-1α in breast cancer. Our finding clarified the possible reason for the poor outcome of anti-angiogenesis therapy and PEDF may have the therapeutic potential.

Free access

Martin Almquist, Elin Isaksson, and Naomi Clyne

Renal hyperparathyroidism (rHPT) is a complex and challenging disorder. It develops early in the course of renal failure and is associated with increased risks of fractures, cardiovascular disease and death. It is treated medically, but when medical therapy cannot control the hyperparathyroidism, surgical parathyroidectomy is an option. In this review, we summarize the pathophysiology, diagnosis, and medical treatment; we describe the effects of renal transplantation; and discuss the indications and strategies in parathyroidectomy for rHPT. Renal hyperparathyroidism develops early in renal failure, mainly as a consequence of lower levels of vitamin D, hypocalcemia, diminished excretion of phosphate and inability to activate vitamin D. Treatment consists of supplying vitamin D and reducing phosphate intake. In later stages calcimimetics might be added. RHPT refractory to medical treatment can be managed surgically with parathyroidectomy. Risks of surgery are small but not negligible. Parathyroidectomy should likely not be too radical, especially if the patient is a candidate for future renal transplantation. Subtotal or total parathyroidectomy with autotransplantation are recognized surgical options. Renal transplantation improves rHPT but does not cure it.

Open access

Rajeev Mishra, Subhash Haldar, Surabhi Suchanti, and Neil A Bhowmick

Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.

Free access

Fahmida Rasha, Latha Ramalingam, Lauren Gollahon, Rakshanda Layeequr Rahman, Shaikh Mizanoor Rahman, Kalhara Menikdiwela, and Naima Moustaid-Moussa

Obesity is a complex disease and a global epidemic. It is a risk factor for other chronic diseases including breast cancer, especially in women after menopause. Diverse etiologies underlie the relationship between obesity and breast cancer. Adipose tissue is in part responsible for these interactions. In obesity, adipose tissue undergoes several metabolic dysregulations resulting in the secretion of many pro-inflammatory cytokines, growth factors, and hormones which in turn, can promote tumor microenvironment (TME) formation and cancer progression within the breast tissue. Angiotensin II (Ang II) is a well-known hypertensive hormone produced systemically and locally by the renin-angiotensin system (RAS). Activation of this system in obesity is a potential contributor to local and systemic inflammation in breast adipose tissue. Ang II actions are primarily mediated through binding to its two receptors, type 1 (AT1R) and type 2 (AT2R). RAS inhibitors include angiotensin-converting enzyme inhibitors (ACE-I) and angiotensin receptor blockers (ARBs) which are currently prescribed as safe antihypertensive therapies. Recent studies have explored the potential use of ACE-I and ARBs in breast cancer patients as anti-tumor agents. Therefore, it is vital to understand the role of RAS in breast cancer and identify mechanisms of Ang II and RAS inhibitors in the TME and in obesity and breast cancer crosstalk. In this review, we performed a detailed analysis and discussed mechanisms of Ang II-AT1R interactions in breast cancer with emphasis on obesity-associated breast cancer. We further summarized recent in vitro, in vivo and human studies that used ACE-I/ARB interventions to improve breast cancer outcomes.

Free access

Jian Chen, Qingyuan Hu, Hongwei Hou, Shuo Wang, Yunfei Zhang, Yanbo Luo, Huan Chen, Huimin Deng, Hongfu Zhu, Lirong Zhang, Hansong Liu, An Wang, and Yong Liu

Thyroid cancer is the most frequent endocrine tumor with a growing incidence worldwide. However, common diagnostic strategy for thyroid cancer classification is hardly to make a proper diagnosis in some cases. To assist classical approach, this study used metabolomics to screen and validate biomarkers from serum and urinary for papillary thyroid cancer (PTC). Overall, 124 untreated PTC, 76 untreated benign thyroid nodule (BTN), and 116 healthy control (HC) were collected in this study. Thirty-six differential metabolites were screened from non-targeted metabolomics with a discovery sample set in comparison with HC and BTN. Serum β-hydroxybutyrate (BHB), docosahexaenoic acid (DHA), 1-methyladenosine (1-MedA), pregnanediol-3-glucuronide (PdG), urinary nicotinic acid mononucleotide (NAM) and xanthosine (Xan) were validated to be significantly differential by targeted metabolomics in validation set. The logistic regression model incorporating six biomarkers had excellent discrimination from receiver-operating characteristics (ROC) analysis, with area under the receiver-operating characteristic curve (AUC) of 0.943 (95% CI 0.902 to 0.983) and 0.952 (95% CI 0.921 to 0.983) for female alone and female + male samples, respectively. The prediction accuracy and false-negative rate in the real setting of one PTC to ten suspicious nodules were 84.7 and 17.7% with the threshold at probablity of 0.5. Results of a double-blind study for PTC and BTN had true positive value of 100% and true negative value of 91.7%. To conclude, BHB, DHA, 1-MedA, PdG, NAM and Xan are suitable biomarkers for PTC, and logistic regression models with the six biomarkers can be potentially used as clinical diagnosis.

Free access

Pedro Marques, Sayka Barry, Eivind Carlsen, David Collier, Amy Ronaldson, Sherine Awad, Neil Dorward, Joan Grieve, Nigel Mendoza, Samiul Muquit, Ashley B Grossman, Frances Balkwill, and Márta Korbonits

Tumour-associated fibroblasts (TAFs) are key elements of the tumour microenvironment, but their role in pituitary neuroendocrine tumours (PitNETs) has been little explored. We hypothesised that TAF-derived cytokines may play a role in tumour aggressiveness and that their release can be inhibited by somatostatin analogues. TAFs were isolated and cultured from 16 PitNETs (11 clinically non-functioning tumours and 5 somatotropinomas). The fibroblast secretome was assessed with a 42-plex cytokine array before and after multiligand somatostatin receptor agonist pasireotide treatment. Angiogenesis and epithelial-to-mesenchymal transition pathway assessment included CD31, E-cadherin and ZEB1 expression. GH3 cells treated with TAF- or skin fibroblast-conditioned medium were assessed for migration, invasion and cell morphology changes. PitNET TAFs secreted significant amounts of cytokines including CCL2, CCL11, VEGF-A, CCL22, IL-6, FGF-2 and IL-8. TAFs from PitNETs with cavernous sinus invasion secreted higher IL-6 levels compared to fibroblasts from non-invasive tumours (P = 0.027). Higher CCL2 release from TAFs correlated with more capillaries (r = 0.672, P = 0.004), and TAFs from PitNETs with a higher Ki-67 tended to secrete more CCL2 (P = 0.058). SST1 is the predominant somatostatin receptor in TAFs, and pasireotide decreased TAF-derived IL-6 by 80% (P < 0.001) and CCL2 by 35% (P = 0.038). GH3 cells treated with TAF-conditioned medium showed increased migration and invasion compared to cells treated with skin fibroblast-conditioned medium, with morphological and E-cadherin and ZEB1 expression changes suggesting epithelial-to-mesenchymal transition. TAF-derived cytokines may increase PitNET aggressiveness, alter angiogenesis and induce epithelial-to-mesenchymal transition changes. Pasireotide’s inhibitory effect on TAF-derived cytokines suggest that this effect may play a role in its anti-tumour effects.