Browse

You are looking at 31 - 40 of 2,268 items for

  • All content x
Clear All
Free access

Maria P Yavropoulou, Marina Tsoli, Konstantinos Barkas, Gregory Kaltsas, and Ashley Grossman

Non-functioning pituitary adenomas, recently alternatively termed pituitary neuroendocrine tumours (NFpitNETs), are mostly benign neoplasms that are not associated with a hormonal hypersecretory syndrome. The clinical spectrum of NFpitNETs varies from completely asymptomatic to the development of panhypopituitarism and manifestations attributed to mass effects on nearby structures. NFpitNETs follow generally an indolent course, but in 5–10% of cases they exhibit more aggressive behaviour, characterised by rapid growth, invasiveness and early recurrence. The initial size of the adenoma, the presence of symptoms and the histological subtype are related to the natural course of NFpitNETs. Active surveillance is usually the strategy of choice in the case of an asymptomatic NFpitNET, while surgical resection is recommended in case of visual and/or neurological abnormalities or rapid tumour growth. Based on previous and emerging data, approximately 50% of patients show tumour growth, while 20% of patients with NF-macroadenomas on active surveillance may require further intervention during a follow-up period of 7 years. Adjuvant radiotherapy is usually considered for large residual tumours or recurrent and/or aggressive adenomas, but there is evidence that medical therapy, especially with cabergoline, can occasionally be beneficial, whereas newer molecular agents are under investigation. Thus, while highly effective medical therapy is awaited, a move towards a more conservative approach seems appropriate, at least until we have better molecular markers of progressiveness.

Restricted access

Isadora Ramos-Andrade, João Moraes, Renata Machado Brandão-Costa, Simone Vargas da Silva, Antônio de Souza, César da Silva, Mariana Renovato-Martins, and Christina Barja-Fidalgo

Obesity is a chronic low-grade inflammatory condition that strongly impacts breast cancer. Aside from inflammatory mediators, obese adipose tissue (AT) secretes high amounts of extracellular vesicles (EVs), which are capable of transferring molecules to target cells and promoting cell-to-cell communication. Here, we investigated how soluble mediators and EVs secreted by human obese AT influence MCF-7 and MDA-MB-231 mammary adenocarcinoma cell lines by modulating cell proliferation, migration, invasion, and signaling pathways. Both cell lineages were stimulated with conditioned media (CM) or EVs obtained from cultures of AT explants collected from lean or obese individuals who underwent plastic or bariatric surgeries, respectively. EVs derived from obese AT increased the proliferative potential of both cell lines and further potentiated the migratory and invasive properties of MDA-MB-231 cells. The proliferative effects of CM and EVs on MCF-7 cells were dependent on ERK/MAPK pathway activation, while the migration and invasiveness of MDA-MB-231 cells were dependent on PI3K/AKT pathway activation. Furthermore, CM derived from obese AT potentiated the pro-angiogenic effect of MDA-MB-231 on endothelial cells. We also detected that EVs derived from obese AT were enriched in leptin and bioactive matrix metallopeptidase 9 (MMP9), and stimulation of MDA-MD-231 cells with those EVs or CM derived from obese AT potentiated the release of MMP9 by those cells. Our data indicate that obese AT secretes molecules and EVs with pro-tumoral activities capable of increasing breast cancer cell malignancy and provide strong evidence of the key role of AT-derived EV signaling in the tumor microenvironment.

Restricted access

Charis Eng

Time flies when we are having fun. These 10 years have gone by in a flash. When time flies, we often forget to dwell on what we have achieved as an editorial team. Yet, we must pause after this decade as there is plenty to be proud of. When I arrived, Endocrine-Related Cancer (ERC) saw slightly over 300 submissions a year with an average turnaround time of a month, which peaked at just a shade under 600, with a current turnaround time of approximately 13 days. The impact factor, which every editor says is not important but cites, rose from ~2.3 to almost 5. More importantly, the actual quality of submissions and hence, published papers have exponentially increased and are represented from around the world. We popularized thematic, and at times anniversary, review issues, inviting relevant original research articles to be submitted and published in the same issue the themed reviews would appear. One thematic issue that I am particularly proud of celebrates early- and mid-career women investigators, and the credit must go to Associate Editor Prof. Debbie Marsh. With incredibly disruptive new ways of communication, ERC also moved into the social media age during my second term. We initiated Profiles which tell the autobiographical journey of inspirational academics working in the broad field of endocrine cancers and hormones in cancer. The latter have temporarily fallen by the wayside in the last few years but I personally would like to see their return.

Restricted access

Marcela Rassi-Cruz, Andrea Gutierrez Maria, Fabio R Faucz, Edra London, Leticia A. P. Vilela, Lucas S. Santana, Anna Flavia F. Benedetti, Tatiana S. Goldbaum, Fabio Y Tanno, Victor Srougi, José Luis Chambô, Maria Adelaide Pereira, Aline Cavalcante, Francisco Carnevale, Bruna Pilan, Luiz Bortolotto, Luciano F Drager, Antonio Mp Lerario, Ana Claudia Latronico, Maria C Fragoso, Berenice Bilharinho Mendonca, Maria Claudia Nogueira Zerbini, Constantine A Stratakis, and Madson Q Almeida

Familial primary aldosteronism (PA) is rare and mostly diagnosed in early-onset hypertension (HT). However, 'sporadic' bilateral adrenal hyperplasia (BAH) is the most frequent cause of PA and remains without genetic etiology in most cases. Our aim was to investigate new genetic defects associated with BAH and PA. We performed whole-exome sequencing (paired blood and adrenal tissue) in 6 patients with PA caused by BAH that underwent unilateral adrenalectomy. Additionally, we conducted functional studies in adrenal hyperplastic tissue and transfected cells to confirm the pathogenicity of the identified genetic variants. Rare germline variants in phosphodiesterase 2A (PDE2A) and 3B (PDE3B) genes were identified in 3 patients. The PDE2A heterozygous variant (p.Ile629Val) was identified in a patient with BAH and early-onset HT at 13 yrs of age. Two PDE3B heterozygous variants (p.Arg217Gln and p.Gly392Val) were identified in patients with BAH and HT diagnosed at 18 and 33 yrs of age, respectively. A strong PDE2A staining was found in all cases of BAH in zona glomerulosa and/or micronodules (that were also positive for CYP11B2). PKA activity in frozen tissue was significantly higher in BAH from patients harboring PDE2A and PDE3B variants. PDE2A and PDE3B variants significantly reduced protein expression in mutant transfected cells compared to WT. Interestingly, PDE2A and PDE3B variants increased SGK1 and SCNN1G/ENaCg at mRNA or protein levels. In conclusion, PDE2A and PDE3B variants were associated with PA caused by BAH. These novel genetic findings expand the spectrum of genetic etiologies of PA.

Restricted access

Xhesika Shanja-Grabarz, Anouchka Coste, David Entenberg, and Antonio Di Cristofano

Genetically engineered and orthotopic xenograft mouse models have been instrumental for increasing our understanding of thyroid cancer progression and for the development of novel therapeutic approaches in a setting that is more physiologically relevant than the classical subcutaneous flank implants. However, the anatomical location of the thyroid gland precludes a non-invasive analysis at the cellular level of the interactions between tumor cells and the surrounding microenvironment and does not allow a real-time evaluation of the response of tumor cells to drug treatments. As a consequence, such studies have generally only relied on endpoint approaches, limiting the amount and depth of the information that could be gathered. Here we describe the development of an innovative approach to imaging specific aspects of thyroid cancer biology, based on the implantation of a permanent, minimally invasive optical window that allows high-resolution, multi-day, intravital imaging of the behavior and cellular dynamics of thyroid tumors in the mouse. We show that this technology allows visualization of fluorescently tagged tumor cells both in immunocompetent, genetically engineered mouse models of anaplastic thyroid cancer (ATC) and in immunocompromised mice carrying orthotopic implanted human or mouse ATC cells. Furthermore, the use of recipient mice in which endothelial cells and macrophages are fluorescently labeled allows the detection of the spatial and functional relationship between tumor cells and their microenvironment. Finally, we show that ATC cells expressing a fluorescent biosensor for caspase 3 activity can be effectively utilized to evaluate, in real-time, the efficacy and kinetics of action of novel small molecule therapeutics. This novel approach to intravital imaging of thyroid cancer represents a platform that will allow, for the first time, the longitudinal, in situ analysis of tumor cell responses to therapy and of their interaction with the microenvironment.

Restricted access

Chunyan Wu, Huijian Zhang, Xiaochun Lin, Yanmei Zeng, Yudan Zhang, Xiaoqin Ma, Yaoming Xue, and Meiping Guan

Studies have shown that pheochromocytoma (PHEO) is associated with glucose intolerance and decreased insulin sensitivity. In adipocytes, pyruvate dehydrogenase kinase 4 (PDK4) is involved in glucose uptake. However, very little is known about the role of PDK4 in the insulin signaling pathway in the adipose tissue of PHEO patients. We analyzed the expression of adipokines, oxidative stress-related genes, PDK4, phosphorylated AMPK (pAMPK) and phosphorylated IRS1 (pIRS1) in the periadrenal adipose tissue (peri-A) of patients with PHEO and non-functioning adrenal adenoma (NFA). We also investigated the effects of epinephrine on PDK4, pAMPK and pIRS1 in human stromal vascular fraction (SVF) cells, mouse 3T3-L1 preadipocytes and brown preadipocytes. PHEO patients had higher mRNA levels of PGC1α, C/EBPα, C/EBPβ, COXII and AP2 and lower mRNA levels of PPARγ in their peri-A than NFA patients. Decreased pAMPK and increased PDK4 and pIRS1 were observed in the peri-A of PHEO patients. PHEO patients also had significantly higher NOX4 protein expression and lower Nrf2 and HO-1 protein expression in their peri-A than NFA patients. In vitro, epinephrine treatment upregulated PDK4 expression, inhibited AMPK phosphorylation and enhanced IRS1 phosphorylation. The knockdown of PDK4 by siRNA upregulated pAMPK and downregulated pIRS1. In conclusion, PDK4 may play an essential role in hypercatecholamine-induced insulin resistance in the periadrenal adipose tissues of PHEO patients.

Restricted access

Stephanie Metcalf, Belinda J Petri, Traci Kruer, Benjamin Green, Susan Dougherty, James L Wittliff, Carolyn M Klinge, and Brian F Clem

Estrogen receptor positive breast cancer (ER+ BC) is the most common form of breast carcinoma accounting for approximately 70% of all diagnoses. Although ER-targeted therapies have improved survival outcomes for this BC subtype, a significant proportion of patients will ultimately develop resistance to these clinical interventions, resulting in disease recurrence. Phosphoserine aminotransferase 1 (PSAT1), an enzyme within the serine synthetic pathway (SSP), has been previously implicated in endocrine resistance. Therefore, we determined whether expression of SSP enzymes, PSAT1 or phosphoglycerate dehydrogenase (PHGDH), affects the response of ER+ BC to 4-hydroxytamoxifen (4-OHT) treatment. To investigate a clinical correlation between PSAT1, PHGDH, and endocrine resistance, we examined microarray data from ER+ patients who received tamoxifen as the sole endocrine therapy. We confirmed that higher PSAT1 and PHGDH expression correlates negatively with poorer outcomes in tamoxifen treated ER+ BC patients. Next, we found that SSP enzyme expression and serine synthesis were elevated in tamoxifen-resistant compared to tamoxifen-sensitive ER+ BC cells in vitro. To determine relevance to endocrine sensitivity, we modified the expression of either PSAT1 or PHGDH in each cell type. Overexpression of PSAT1 in tamoxifen-sensitive MCF-7 cells diminished 4-OHT inhibition on cell proliferation. Conversely, silencing of either PSAT1 or PHGDH resulted in greater sensitivity to 4-OHT treatment in LCC9 tamoxifen-resistant cells. Likewise, the combination of a PHGDH inhibitor with 4-OHT decreased LCC9 cell proliferation. Collectively, these results suggest that overexpression of serine synthetic pathway enzymes contribute to tamoxifen resistance in ER+ BC, which can be targeted as a novel combinatorial treatment option.

Free access

James F Powers, Brent Cochran, James D Baleja, Hadley D Sikes, Andrew D Pattison, Xue Zhang, Inna Lomakin, Annette Shepard-Barry, Karel Pacak, Sun Jin Moon, Troy F Langford, Kassi Taylor Stein, Richard W Tothill, Yingbin Ouyang, and Arthur S Tischler

Restricted access

Andrea Gutierrez Maria, Christina Tatsi, Annabel Berthon, Ludivine Drougat, Nikolaos Settas, Fady Hannah-Shmouni, Jerome Bertherat, Fabio R Faucz, and Constantine A Stratakis

Mutations in the protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) and armadillo repeat-containing 5 (ARMC5) genes cause Cushing‘s syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD) and primary bilateral macronodular adrenocortical hyperplasia (PBMAH), respectively. Between the two genes, ARMC5 is highly polymorphic with several variants in the population, whereas PRKAR1A has very little, if any, non-pathogenic variation in its coding sequence. We tested the hypothesis that ARMC5 variants may affect the clinical presentation of PPNAD and CS among patients with PRKAR1A mutations. In this study, 91 patients with PPNAD due to PRKAR1A mutations were tested for abnormal cortisol secretion or CS and for ARMC5 sequence variants. Abnormal cortisol secretion was present in 71 of 74 patients with ARMC5 variants, whereas 11 of 17 patients negative for ARMC5 variants did not have hypercortisolemia. The presence of ARMC5 variants was a statistically strong predictor of CS among patients with PRKAR1A mutations (P < 0.001). Among patients with CS due to PPNAD, ARMC5 variants were associated with lower cortisol levels at baseline (P = 0.04) and after high dose dexamethasone administration (P = 0.02). The ARMC5 p.I170V variant increased ARMC5 protein accumulation in vitro and decreased viability of NCI-H295 cells (but not HEK 293T cells). PPNAD tissues with ARMC5 variants showed stronger ARMC5 protein expression than those that carried a normal ARMC5 sequence. Taken together, our results suggest that ARMC5 variants among patients with PPNAD due to PRKAR1A defects may play the role of a genetic modifier for the presence and severity of hypercortisolemia.

Free access

Jennifer W Carlisle, Caroline S Jansen, Mehmet Asim Bilen, and Haydn Kissick