Browse

You are looking at 11 - 20 of 2,248 items for

  • All content x
Clear All
Free access

James F Powers, Brent Cochran, James D Baleja, Hadley D Sikes, Andrew D Pattison, Xue Zhang, Inna Lomakin, Annette Shepard-Barry, Karel Pacak, Sun Jin Moon, Troy F Langford, Kassi Taylor Stein, Richard W Tothill, Yingbin Ouyang, and Arthur S Tischler

Restricted access

Andrea Gutierrez Maria, Christina Tatsi, Annabel Berthon, Ludivine Drougat, Nikolaos Settas, Fady Hannah-Shmouni, Jerome Bertherat, Fabio R Faucz, and Constantine A Stratakis

Mutations in the protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) and armadillo repeat-containing 5 (ARMC5) genes cause Cushing‘s syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD) and primary bilateral macronodular adrenocortical hyperplasia (PBMAH), respectively. Between the two genes, ARMC5 is highly polymorphic with several variants in the population, whereas PRKAR1A has very little, if any, non-pathogenic variation in its coding sequence. We tested the hypothesis that ARMC5 variants may affect the clinical presentation of PPNAD and CS among patients with PRKAR1A mutations. In this study, 91 patients with PPNAD due to PRKAR1A mutations were tested for abnormal cortisol secretion or CS and for ARMC5 sequence variants. Abnormal cortisol secretion was present in 71 of 74 patients with ARMC5 variants, whereas 11 of 17 patients negative for ARMC5 variants did not have hypercortisolemia. The presence of ARMC5 variants was a statistically strong predictor of CS among patients with PRKAR1A mutations (P < 0.001). Among patients with CS due to PPNAD, ARMC5 variants were associated with lower cortisol levels at baseline (P = 0.04) and after high dose dexamethasone administration (P = 0.02). The ARMC5 p.I170V variant increased ARMC5 protein accumulation in vitro and decreased viability of NCI-H295 cells (but not HEK 293T cells). PPNAD tissues with ARMC5 variants showed stronger ARMC5 protein expression than those that carried a normal ARMC5 sequence. Taken together, our results suggest that ARMC5 variants among patients with PPNAD due to PRKAR1A defects may play the role of a genetic modifier for the presence and severity of hypercortisolemia.

Free access

Jennifer W Carlisle, Caroline S Jansen, Mehmet Asim Bilen, and Haydn Kissick

Free access

Neil A Bhowmick, Jillian Oft, Tanya Dorff, Sumanta Pal, Neeraj Agarwal, Robert A Figlin, Edwin M Posadas, Stephen J Freedland, and Jun Gong

The current pandemic (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health challenge with active development of antiviral drugs and vaccines seeking to reduce its significant disease burden. Early reports have confirmed that transmembrane serine protease 2 (TMPRSS2) and angiotensin converting enzyme 2 (ACE2) are critical targets of SARS-CoV-2 that facilitate viral entry into host cells. TMPRSS2 and ACE2 are expressed in multiple human tissues beyond the lung including the testes where predisposition to SARS-CoV-2 infection may exist. TMPRSS2 is an androgen-responsive gene and its fusion represents one of the most frequent alterations in prostate cancer. Androgen suppression by androgen deprivation therapy and androgen receptor signaling inhibitors form the foundation of prostate cancer treatment. In this review, we highlight the growing evidence in support of androgen regulation of TMPRSS2 and ACE2 and the potential clinical implications of using androgen suppression to downregulate TMPRSS2 to target SARS-CoV-2. We also discuss the future directions and controversies that need to be addressed in order to establish the viability of targeting TMPRSS2 and/or ACE2 through androgen signaling regulation for COVID-19 treatment, particularly its relevance in the context of prostate cancer management.

Restricted access

Kyungmin Lee, Sang-Hyun Lee, Wooil Kim, Jangwook Lee, Jong-Gil Park, Jang-Seong Kim, Jung Tae Kim, Yea Eun Kang, Minho Shong, Hyo Jin Lee, Jin-Man Kim, Won Gu Kim, Bon Seok Koo, Koon Soon Kim, and Jeong-Ki Min

Anaplastic thyroid cancer (ATC) is a rapidly growing, highly metastatic cancer with limited therapeutic alternatives, thus targeted therapies need to be developed. This study aimed to examine desmoglein 2 (Dsg2) expression in ATC and its biological role and potential as a therapeutic target in ATC. Consequently, Dsg2 was downregulated or aberrantly expressed in ATC tissues. ATC patients with low Dsg2 expression levels also presented with distant metastasis. Dsg2 depletion significantly increased cell migration and invasion, with a relatively limited effect on ATC cell proliferation in vitro and increased distant metastasis in vivo. Dsg2 knockdown induced cell motility through the hepatocyte growth factor receptor (HGFR, c-Met)/Src/Rac1 signaling axis, with no alterations in the expression of EMT-related molecules. Further, specific targeting of c-Met significantly inhibited the motility of shDsg2-depleted ATC cells. Decreased membrane Dsg2 expression increased the metastatic potential of ATC cells. These results indicate that Dsg2 plays an important role in ATC cell migration and invasiveness. Therapies targeting c-Met might be effective among ATC patients with low membrane Dsg2 expression levels, indicating that the analysis of Dsg2 expression potentially provides novel insights into treatment strategies for ATC.

Restricted access

Douglas Wiseman, James D McDonald, Dhaval Patel, Electron Kebebew, Karel Pacak, and Naris Nilubol

Postoperative hypotension frequently occurs after resection of pheochromocytoma and/or paraganglioma (PPGLs). Epidural anesthesia (EA) is often used for pain control in open resection of these tumors; one of its side effects is hypotension. Our aim is to determine if EA is associated with an increased risk of postoperative hypotension after open resection of PPGLs. We conducted a retrospective review of patients who underwent open resection of PPGLs at the National Institutes of Health from 2004 to 2019. Clinical and perioperative parameters were analyzed by the use of EA. The primary endpoint was postoperative hypotension. Ninety-seven patients (46 female and 51 male; mean age, 38.5 years) underwent open resection of PPGLs and 69 (71.1%) received EA. Patients with EA had a higher rate beta-blocker use (79.7% vs 57.1%, P = 0.041), metastasis (69.6% vs 39.3%, P = 0.011), and were more frequently hypotensive after surgery (58.8% vs 25.0%, P = 0.003) compared to those without EA. Patients with postoperative hypotension had higher plasma normetanephrines than those without (7.3 fold vs 4.1 fold above the upper limit of normal, P = 0.018). Independent factors associated with postoperative hypotension include the use of beta-blockers (HR = 3.35 (95% CI: 1.16–9.67), P = 0.026) and EA (HR = 3.49 (95% CI: 1.25–9.76), P = 0.017). Data from this retrospective study suggest that, in patients with open resection of PPGLs, EA is an independent risk factor for early postoperative hypotension. Special caution is required in patients on beta-blockade. A prospective evaluation with standardized protocols for the use of EA and management of hemodynamic variability is necessary.

Open access

Peipei Xu, Su Zeng, Xiaotian Xia, Ziheng Ye, Meifang Li, Mingyun Chen, Tian Xia, Jingjing Xu, Qiong Jiao, Liang Liu, Lianxi Li, and Minggao Guo

Our aims were to uncover the role of Family with sequence similarity 172-member A (FAM172A) in pathogenesis of follicular thyroid carcinoma (FTC) and to evaluate its value in differential diagnosis between malignant and benign thyroid follicular lesions. FAM172A expression was evaluated by q-PCR, immunoblotting and immunohistochemistry (IHC). The ability of proliferation, migration and invasion of cells were assessed by Cell Counting Kit-8 assay (CCK8), Clone-formation and Transwell assays. Nude mouse tumorigenicity assays were used to investigate the role of FAM172A in pathogenesis of FTC in vivo. The value of FAM172A in differential diagnosis for FTC were assessed using 120 formalin-fixed paraffin-embedded (FFPE) tissues after operation and 81 fine-needle aspiration biopsy (FNAB) samples before operation. FAM172A was highly expressed in FTC tissues and FTC cell lines. Down-regulation of FAM172A inhibited the proliferation, invasion and migration of FTC cells through Erk1/2 and JNK pathways. Subcutaneous tumorigenesis in nude mice showed that knockdown of FAM172A inhibited tumor growth and progression in vivo. The FAM172A IHC scores of 3.5 had 92% sensitivity and 63% specificity to separate FTC from benign/borderline thyroid follicular lesions, and 92% sensitivity and 80% specificity to discriminate FTC from benign thyroid follicular lesions in postoperative FFPE samples. The corresponding values were 75% and 78%, and 75% and 89% in preoperative FNA samples, respectively. FAM172A plays an important role in the pathogenesis of FTC through Erk1/2 and JNK pathways. FAM172A may be a potential marker for preoperative diagnosis of FTC based on the IHC results of thyroid FNAB samples.

Open access

Andreas M Hoff, Sigrid M Kraggerud, Sharmini Alagaratnam, Kaja C G Berg, Bjarne Johannessen, Maren Høland, Gro Nilsen, Ole C Lingjærde, Peter W Andrews, Ragnhild A Lothe, and Rolf I Skotheim

Testicular germ cell tumours (TGCTs) appear as different histological subtypes or mixtures of these. They show similar, multiple DNA copy number changes, where gain of 12p is pathognomonic. However, few high-resolution analyses have been performed and focal DNA copy number changes with corresponding candidate target genes remain poorly described for individual subtypes. We present the first high-resolution DNA copy number aberration (CNA) analysis on the subtype embryonal carcinomas (ECs), including 13 primary ECs and 5 EC cell lines. We identified recurrent gains and losses and allele-specific CNAs. Within these regions, we nominate 30 genes that may be of interest to the EC subtype. By in silico analysis of data from 150 TGCTs from The Cancer Genome Atlas (TCGA), we further investigated CNAs, RNA expression, somatic mutations and fusion transcripts of these genes. Among primary ECs, ploidy ranged between 2.3 and 5.0, and the most common aberrations were DNA copy number gains at chromosome (arm) 7, 8, 12p, and 17, losses at 4, 10, 11, and 18, replicating known TGCT genome characteristics. Gain of whole or parts of 12p was found in all samples, including a highly amplified 100 kbp segment at 12p13.31, containing SLC2A3. Gain at 7p21, encompassing ETV1, was the second most frequent aberration. In conclusion, we present novel CNAs and the genes located within these regions, where the copy number gain of SLC2A3 and ETV1 are of interest, and which copy number levels also correlate with expression in TGCTs.

Restricted access

Yulong Li, Jianhua Zhang, Poorni R Adikaram, James Welch, Bin Guan, Lee S Weinstein, Haobin Chen, and William F Simonds

Mutation of the CDC73 gene, which encodes parafibromin, has been linked with parathyroid cancer. However, no correlation between genotypes of germline CDC73 mutations and the risk of parathyroid cancer has been known. In this study, subjects with germline CDC73 mutations were identified from the participants of two clinical protocols at National Institutes of Health (Discovery Cohort) and from the literature (Validation Cohort). The relative risk of developing parathyroid cancer was analyzed as a function of CDC73 genotype, and the impact of representative mutations on structure of parafibromin was compared between genotype groups. A total of 419 subjects, 68 in Discovery Cohort and 351 in Validation Cohort, were included. In both cohorts, percentages of CDC73 germline mutations that predicted significant conformational disruption or loss of expression of parafibromin (referred as ‘high-impact mutations’) were significantly higher among the subjects with parathyroid cancers compared to all other subjects. The Kaplan–Meier analysis showed that high-impact mutations were associated with a 6.6-fold higher risk of parathyroid carcinoma compared to low-impact mutations, despite a similar risk of developing primary hyperparathyroidism between two groups. Disruption of the C-terminal domain (CTD) of parafibromin is directly involved in predisposition to parathyroid carcinoma, since only the mutations impacting this domain were associated with an increased risk of parathyroid carcinoma. Structural analysis revealed that a conserved surface structure in the CTD is universally disrupted by the mutations affecting this domain. In conclusion, high-impact germline CDC73 mutations were found to increase risk of parathyroid carcinoma by disrupting the CTD of parafibromin.

Restricted access

Nicole Bechmann, Mats Leif Moskopp, Martin Ullrich, Bruna Calsina, Pål William Wallace, Susan Richter, Markus Friedemann, Katharina Langton, Stephanie M.J. Fliedner, Henri JLM Timmers, Svenja Nölting, Felix Beuschlein, Martin Fassnacht, Aleksander Prejbisz, Karel Pacak, Hans K Ghayee, Stefan R. Bornstein, Peter Dieterich, Jens Pietzsch, Ben Wielockx, Mercedes Robledo, Nan Qin, and Graeme Eisenhofer

Mutations that drive the stabilization of hypoxia inducible factor 2α (HIF2α) and downstream pseudohypoxic signaling are known to predispose to the development of pheochromocytomas and paragangliomas (PPGLs). However, any role of HIF2α in predisposition to metastatic disease remains unclear. To assess such a role we combined gene-manipulations in pheochromocytoma cell lines with retrospective analyses of patient data and gene expression profiling in tumor specimens. Among 425 patients with PPGLs identified with mutations in tumor-susceptibility genes, those with tumors due to activation of pseudohypoxic pathways had a higher frequency of metastatic disease than those with tumors due to activation of kinase-signaling pathways, even without inclusion of patients with mutations in SDHB (18.6% vs. 4.3% in, p<0.0001). Three out of nine (33%) of patients with gain-of-function mutations in HIF2α had metastatic disease. In cell line studies, elevated expression of HIF2α enhanced cell proliferation and led to increased migration and invasion capacity. Moreover, HIF2α expression in HIF2α-deficient cells resulted in increased cell motility, diffuse cluster formation and emergence of pseudopodia indicating changes in cell adhesion and cytoskeletal remodeling. In a mouse liver metastasis model, HIF2α enhanced the metastatic load. Transcriptomics data revealed alterations in focal adhesion and extracellular matrix-receptor interactions in HIF2α-mutated PPGLs. Our translational findings demonstrate that HIF2α supports pro-metastatic behavior in PPGLs, though other factors remain critical for subsequent transition to metastasis. We identified LAMB1 and COL4A2 as new potential therapeutic targets for HIF2α-driven PPGLs. Identified HIF2α downstream targets might open a new therapeutic window for aggressive HIF2α-expressing tumors.