You are looking at 31 - 40 of 2,286 items for

  • All content x
Clear All
Free access

Sophie Moog, Charlotte Lussey-Lepoutre, and Judith Favier

Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors arising from the adrenal medulla or extra-adrenal paraganglia. Around 40% of all cases are caused by a germline mutation in a susceptibility gene, half of which being found in an SDHx gene (SDHA, SDHB, SDHC, SDHD or SDHAF2). They encode the four subunits and assembly factor of succinate dehydrogenase (SDH), a mitochondrial enzyme involved both in the tricarboxylic acid cycle and electron transport chain. SDHx mutations lead to the accumulation of succinate, which acts as an oncometabolite by inhibiting iron(II) and alpha-ketoglutarate-dependent dioxygenases thereby regulating the cell’s hypoxic response and epigenetic processes. Moreover, SDHx mutations induce cell metabolic reprogramming and redox imbalance. Major discoveries in PPGL pathophysiology have been made since the initial discovery of SDHD gene mutations in 2000, improving the understanding of their biology and patient management. It indeed provides new opportunities for diagnostic tools and innovative therapeutic targets in order to improve the prognosis of patients affected by these rare tumors, in particular in the context of metastatic diseases associated with SDHB mutations. This review first describes an overview of the pathophysiology and then focuses on clinical implications of the epigenetic and metabolic reprogramming of SDH-deficient PPGL.

Open access

Trisha Dwight, Edward Kim, Karine Bastard, Diana E Benn, Graeme Eisenhofer, Susan Richter, Massimo Mannelli, Elena Rapizzi, Aleksander Prejbisz, Mariola Peczkowska, Karel Pacak, and Roderick Clifton-Bligh

Mosaic or somatic EPAS1 mutations are associated with a range of phenotypes including pheochromocytoma and/or paraganglioma (PPGL), polycythaemia and somatostatinoma. The pathogenic potential of germline EPAS1 variants however is not well understood. We report a number of germline EPAS1 variants occurring in patients with PPGL, including a novel variant c.739C>A (p.Arg247Ser); a previously described variant c.1121T>A (p.Phe374Tyr); several rare variants, c.581A>G (p.His194Arg), c.2353C>A (p.Pro785Thr) and c.2365A>G (p.Ile789Val); and a common variant c.2296A>C (p.Thr766Pro). We performed detailed functional studies to understand their pathogenic role in PPGL. In transient transfection studies, EPAS1/HIF-2α p.Arg247Ser, p.Phe374Tyr and p.Pro785Thr were all stable in normoxia. In co-immunoprecipitation assays, only the novel variant p.Arg247Ser showed diminished interaction with pVHL. A direct interaction between HIF-2α Arg247 and pVHL was confirmed in structural models. Transactivation was assessed by means of a HRE-containing reporter gene in transiently transfected cells, and significantly higher reporter activity was only observed with EPAS1/HIF-2α p.Phe374Tyr and p.Pro785Thr.

In conclusion, three germline EPAS1 variants (c.739C>A (p.Arg247Ser), c.1121T>A (p.Phe374Tyr) and c.2353C>A (p.Pro785Thr)) all have some functional features in common with somatic activating mutations. Our findings suggest that these three germline variants are hypermorphic alleles that may act as modifiers to the expression of PPGLs.

Restricted access

Vincenzo Condello, Filomena Cetani, Maria Denaro, Liborio Torregrossa, Elena Pardi, Paolo Piaggi, Simona Borsari, Anello Marcello Poma, Lucia Anna Muscarella, Paolo Graziano, Maria Grazia Chiofalo, Andrea Repaci, Giovanni Tallini, Francesco Boi, Gabriele Materazzi, Fulvio Basolo, and Claudio Marcocci

Parathyroid carcinoma (PC) is one of the rarest and aggressive malignancies of the endocrine system. In some instances the histological diagnosis remains uncertain unless there is evidence of gross local invasion or secondary spread. The identification of molecular markers could improve the diagnostic accuracy of these lesions.

The expression of 740 genes involved in the tumor progression processes was assessed in 8 parathyroid adenomas (PAs), 17 non-metastatic and 10 metastatic PCs using NanoString technology. Clustering analysis and Ingenuity Pathway Analysis (IPA) were interrogated to compare the gene expression profiles among the three analyzed groups and to evaluate the potential role of differentially expressed genes, respectively. The 103 differentially expressed genes between metastatic PCs and PAs are able to discriminate perfectly the two groups from a molecular point of view. The molecular signatures identified in non-metastatic PCs vs. PAs and in metastatic PCs vs. non-metastatic PCs comparisons, although with some exceptions, seem to be histotype-specific IPA reveals that hepatic fibrosis/hepatic stellate cell activation and GP6 signaling pathway are involved in malignant behavior of parathyroid tumors, whereas the activation of the HOTAIR regulatory pathway are involved in the metastatization process.

Our investigation identified differentially expressed genes in non-metastatic PCs mainly encoding ECM proteins and in metastatic PCs driving endothelial-to-mesenchymal transition or encoding mediators of angiogenesis. The identified genes might be promising molecular markers potentially useful in the clinical practice for the early diagnosis and prognosis of PC.

Restricted access

Kathrin A Schmohl, Yang Han, Mariella Tutter, Nathalie Schwenk, Rim S J Sarker, Katja Steiger, Sibylle I Ziegler, Peter Bartenstein, Peter J Nelson, and Christine Spitzweg

Thyroid hormones are emerging as critical regulators of tumour growth and progression. To assess the contribution of thyroid hormone signalling via integrin αvβ3, expressed on many tumour cells, endothelial cells, and stromal cells, to tumour growth, we compared the effects of thyroid hormones vs tetrac, a specific inhibitor of thyroid hormone action at integrin αvβ3, in two murine xenograft tumour models with and without integrin αvβ3 expression. Integrin αvβ3-positive human anaplastic thyroid cancer cells SW1736 and integrin αvβ3-negative human hepatocellular carcinoma cells HuH7 were injected into the flanks of nude mice. Tumour growth was monitored in euthyroid, hyperthyroid, hypothyroid, and euthyroid tetrac-treated mice. In SW1736 xenografts, hyperthyroidism led to a significantly increased tumour growth resulting in a decreased survival compared to euthyroid mice, while tumour growth was significantly reduced and, hence, survival prolonged in hypothyroid and tetrac-treated mice. Both proliferation and vascularisation, as determined by Ki67 and CD31 immunofluorescence staining, respectively, were significantly increased in tumours from hyperthyroid mice as compared to hypothyroid and tetrac-treated mice. No differences in tumour growth, survival, or Ki67 staining were observed between the different groups in integrin αvβ3-negative HuH7 xenografts. Vascularisation, however, was significantly decreased in hypothyroid and tetrac-treated mice compared to euthyroid and hyperthyroid mice. Apoptosis was not affected in either tumour model, nor were cell proliferation or apoptosis in vitro. Tumour growth regulation by thyroid hormones in αvβ3-positive tumours has important implications for cancer patients, especially those with thyroid dysfunctions and thyroid cancer patients treated with thyrotropin-suppressive L-thyroxine doses.

Restricted access

Arun Mouli Kolinjivadi, Siao Ting Chong, and Joanne Ngeow

Co-ordinated oscillation of mammalian circadian clock and cell cycle is essential for cellular and organismal homeostasis. Existing preclinical, epidemiological, molecular and biochemical evidence reveal a robust interplay between circadian clock, genome instability and cancer. Furthermore, recent investigations have demonstrated that the alterations in circadian clock perturb genome stability by modulating the cell cycle timing, altering DNA replication fork progression, influencing DNA Damage Response (DDR) and DNA repair efficiency. In this review, we examine the most recent findings from different eukaryotic model systems and discuss the functional interaction between circadian factors with key DNA replication, DDR and DNA repair genes.

Restricted access

Irasema Mendieta, Gabriel Rodríguez-Gómez, Bertha Rueda-Zarazúa, Julia Rodríguez-Castelán, Winniberg Álvarez-León, Evangelina Delgado-González, Brenda Anguiano, Olivia Vázquez-Martínez, Mauricio Díaz-Muñoz, and Carmen Aceves

Neuroblastoma (NB) is the most common solid childhood tumor, and all-trans retinoic acid (ATRA) is used as a treatment to decrease minimal residual disease. Molecular iodine (I2) induces differentiation and/or apoptosis in several neoplastic cells through activation of PPARγ nuclear receptors. Here, we analyzed whether the coadministration of I2 and ATRA increases the efficacy of NB treatment. ATRA-sensitive (SH-SY5Y), partially-sensitive (SK-N-BE(2)), and non-sensitive (SK-N-AS) NB cells were used to analyze the effect of I2 and ATRA in vitro and in xenografts (Foxn1 nu/nu mice), exploring actions on cellular viability, differentiation, and molecular responses. In the SH-SY5Y cells, 200 μM I2 caused a 100-fold (0.01 µM) reduction in the antiproliferative dose of ATRA and promoted neurite extension and neural marker expression (tyrosine hydroxylase (TH) and tyrosine kinase receptor alpha (Trk-A)). In SK-N-AS, the I2 supplement sensitized these cells to 0.1 μM ATRA, increasing the ATRA-receptor (RARα) and PPARγ expression, and decreasing the Survivin expression. The I2 supplement increased the mitochondrial membrane potential in SK-N-AS suggesting the participation of mitochondrial-mediated mechanisms involved in the sensibilization to ATRA. In vivo, oral I2 supplementation (0.025%) synergized the antitumor effect of ATRA (1.5 mg/kg BW) and prevented side effects (body weight loss and diarrhea episodes). The immunohistochemical analysis showed that I2 supplementation decreased the intratumoral vasculature (CD34). We suggest that the I2 + ATRA combination should be studied in preclinical and clinical trials to evaluate its potential adjuvant effect in addition to conventional treatments.

Free access

Charis Eng

Restricted access

Kyungmin Lee, Sang-Hyun Lee, Wooil Kim, Jangwook Lee, Jong-Gil Park, Jang-Seong Kim, Jung Tae Kim, Yea Eun Kang, Minho Shong, Hyo Jin Lee, Jin-Man Kim, Won Gu Kim, Bon Seok Koo, Koon Soon Kim, and Jeong-Ki Min

Anaplastic thyroid cancer (ATC) is a rapidly growing, highly metastatic cancer with limited therapeutic alternatives, thus targeted therapies need to be developed. This study aimed to examine desmoglein 2 (Dsg2) expression in ATC and its biological role and potential as a therapeutic target in ATC. Consequently, Dsg2 was downregulated or aberrantly expressed in ATC tissues. ATC patients with low Dsg2 expression levels also presented with distant metastasis. Dsg2 depletion significantly increased cell migration and invasion, with a relatively limited effect on ATC cell proliferation in vitro and increased distant metastasis in vivo. Dsg2 knockdown induced cell motility through the hepatocyte growth factor receptor (HGFR, c-Met)/Src/Rac1 signaling axis, with no alterations in the expression of EMT-related molecules. Further, specific targeting of c-Met significantly inhibited the motility of shDsg2-depleted ATC cells. Decreased membrane Dsg2 expression increased the metastatic potential of ATC cells. These results indicate that Dsg2 plays an important role in ATC cell migration and invasiveness. Therapies targeting c-Met might be effective among ATC patients with low membrane Dsg2 expression levels, indicating that the analysis of Dsg2 expression potentially provides novel insights into treatment strategies for ATC.

Open access

Pei-Pei Xu, Su Zeng, Xiao-Tian Xia, Zi-Heng Ye, Mei-Fang Li, Ming-Yun Chen, Tian Xia, Jing-Jing Xu, Qiong Jiao, Liang Liu, Lian-Xi Li, and Ming-Gao Guo

Our aims were to uncover the role of FAM172A (Family with sequence similarity 172 member A) in the pathogenesis of follicular thyroid carcinoma (FTC) and to evaluate its value in the differential diagnosis between malignant and benign thyroid follicular lesions. FAM172A expression was evaluated by q-PCR, immunoblotting and immunohistochemistry (IHC). The ability of proliferation, migration and invasion of cells were assessed by Cell Counting Kit-8 assay (CCK8), clone-formation and Transwell assays. Nude mouse tumorigenicity assays were used to investigate the role of FAM172A in the pathogenesis of FTC in vivo. The value of FAM172A in the differential diagnosis for FTC was assessed using 120 formalin-fixed paraffin-embedded (FFPE) tissues after the operation and 81 fine-needle aspiration biopsy (FNAB) samples before the operation. FAM172A was highly expressed in FTC tissues and FTC cell lines. Downregulation of FAM172A inhibited the proliferation, invasion and migration of FTC cells through Erk1/2 and JNK pathways. Subcutaneous tumorigenesis in nude mice showed that knockdown of FAM172A inhibited tumor growth and progression in vivo. The FAM172A IHC scores of 3.5 had 92% sensitivity and 63% specificity to separate FTC from benign/borderline thyroid follicular lesions, and 92% sensitivity and 80% specificity to discriminate FTC from benign thyroid follicular lesions in postoperative FFPE samples. The corresponding values were 75 and 78%, and 75 and 89% in preoperative FNA samples, respectively. FAM172A plays an important role in the pathogenesis of FTC through Erk1/2 and JNK pathways. FAM172A may be a potential marker for the preoperative diagnosis of FTC based on the IHC results of thyroid FNAB samples.

Restricted access

Nicole Bechmann, Mats Leif Moskopp, Martin Ullrich, Bruna Calsina, Pål William Wallace, Susan Richter, Markus Friedemann, Katharina Langton, Stephanie M J Fliedner, Henri J L M Timmers, Svenja Nölting, Felix Beuschlein, Martin Fassnacht, Aleksander Prejbisz, Karel Pacak, Hans K Ghayee, Stefan R Bornstein, Peter Dieterich, Jens Pietzsch, Ben Wielockx, Mercedes Robledo, Nan Qin, and Graeme Eisenhofer

Mutations that drive the stabilization of hypoxia inducible factor 2α (HIF2α) and downstream pseudohypoxic signaling are known to predispose to the development of pheochromocytomas and paragangliomas (PPGLs). However, any role of HIF2α in predisposition to metastatic disease remains unclear. To assess such a role we combined gene-manipulations in pheochromocytoma cell lines with retrospective analyses of patient data and gene expression profiling in tumor specimens. Among 425 patients with PPGLs identified with mutations in tumor-susceptibility genes, those with tumors due to activation of pseudohypoxic pathways had a higher frequency of metastatic disease than those with tumors due to activation of kinase-signaling pathways, even without inclusion of patients with mutations in SDHB (18.6% vs 4.3% in, P < 0.0001). Three out of nine (33%) patients with gain-of-function mutations in HIF2α had metastatic disease. In cell line studies, elevated expression of HIF2α enhanced cell proliferation and led to increased migration and invasion capacity. Moreover, HIF2α expression in HIF2α-deficient cells resulted in increased cell motility, diffuse cluster formation and emergence of pseudopodia indicating changes in cell adhesion and cytoskeletal remodeling. In a mouse liver metastasis model, Hif2a enhanced the metastatic load. Transcriptomics data revealed alterations in focal adhesion and extracellular matrix–receptor interactions in HIF2α-mutated PPGLs. Our translational findings demonstrate that HIF2α supports pro-metastatic behavior in PPGLs, though other factors remain critical for subsequent transition to metastasis. We identified LAMB1 and COL4A2 as new potential therapeutic targets for HIF2α-driven PPGLs. Identified HIF2α downstream targets might open a new therapeutic window for aggressive HIF2α-expressing tumors.