Browse

You are looking at 101 - 110 of 1,984 items for

Free access

Christina Wei and Elizabeth C Crowne

Endocrine abnormalities are common among childhood cancer survivors. Abnormalities of the hypothalamic–pituitary–adrenal axis (HPAA) are relatively less common, but the consequences are severe if missed. Patients with tumours located and/or had surgery performed near the hypothalamic–pituitary region and those treated with an accumulative cranial radiotherapy dose of over 30 Gy are most at risk of adrenocorticotrophic hormone (ACTH) deficiency. Primary adrenal insufficiency may occur in patients with tumours located in or involving one or both adrenals. The effects of adjunct therapies also need to be considered, particularly, new immunotherapies. High-dose and/or prolonged courses of glucocorticoid treatment can result in secondary adrenal insufficiency, which may take months to resolve and hence reassessment is important to ensure patients are not left on long-term replacement steroids inappropriately. The prevalence and cumulative incidences of HPAA dysfunction are difficult to quantify because of its non-specific presentation and lack of consensus regarding its investigations. The insulin tolerance test remains the gold standard for the diagnosis of central cortisol deficiency, but due to its risks, alternative methods with reduced diagnostic sensitivities are often used and must be interpreted with caution. ACTH deficiency may develop many years after the completion of oncological treatment alongside other pituitary hormone deficiencies. It is essential that health professionals involved in the long-term follow-up of childhood cancer survivors are aware of individuals at risk of developing HPAA dysfunction and implement appropriate monitoring and treatment.

Restricted access

Sunmi Park, Mark C Willingham, Jun Qi and Sheue-Yann Cheng

Compelling epidemiological evidence shows a strong positive correlation of obesity with thyroid cancer. In vivo studies have provided molecular evidence that high-fat-diet-induced obesity promotes thyroid cancer progression by aberrantly activating leptin-JAK2-STAT3 signaling in a mouse model of thyroid cancer (Thrb PV/PV Pten +/ mice). The Thrb PV/PV Pten +/ mouse expresses a dominantly negative thyroid hormone receptor β (denoted as PV) and a deletion of one single allele of the Pten gene. The Thrb PV/PV Pten +/ mouse spontaneously develops follicular thyroid cancer, which allows its use as a preclinical mouse model to test potential therapeutics. We recently showed that inhibition of STAT3 activity by a specific inhibitor markedly delays thyroid cancer progression in high-fat-diet-induced obese Thrb PV/PV Pten +/ mice (HFD-Thrb PV/PV Pten +/ mice). Further, metformin, a widely used antidiabetic drug, blocks invasion and metastasis, but not thyroid tumor growth in HFD-Thrb PV/PV Pten +/ mice. To improve efficacy in reducing thyroid tumor growth, we treated HFD-Thrb PV/PV Pten +/ with JQ1, a potent inhibitor of the activity of bromodomain and extraterminal domain (BET) and with metformin. We found that the combined treatment synergistically suppressed thyroid tumor growth by attenuating STAT3 and ERK signaling, resulting in decreased anti-apoptotic key regulators such as Mcl-1, Bcl-2 and survivin and increased pro-apoptotic regulators such as Bim, BAD and cleave caspase 3. Furthermore, combined treatment of JQ1 and metformin reduced cMyc protein levels to suppress vascular invasion, anaplasia and lung metastasis. These findings indicate that combined treatment is more effective than metformin alone and suggest a novel treatment modality for obesity-activated thyroid cancer.

Restricted access

Shu-Fu Lin, Jen-Der Lin, Chuen Hsueh, Ting-Chao Chou and Richard J Wong

Activation of cyclin-dependent kinase activity is frequently observed in many human cancers; therefore, cyclin-dependent kinases that promote cell cycle transition and cell proliferation may be potential targets in the treatment of malignancy. The therapeutic effects of roniciclib, a cyclin-dependent kinase inhibitor for papillary and follicular thyroid cancer (designated as well-differentiated thyroid cancer), were investigated in this study. Roniciclib inhibited cell proliferation in two papillary and two follicular thyroid cancer cell lines in a dose-dependent manner. Roniciclib activated caspase-3 activity and induced apoptosis. Cell cycle progression was arrested in the G2/M phase. Roniciclib treatment in vivo retarded the growth of two well-differentiated thyroid tumors in xenograft models in a dose-dependent fashion. Furthermore, the combination of roniciclib with sorafenib was more effective than either single treatment in a follicular thyroid cancer xenograft model. Acceptable safety profiles appeared in animals treated with either roniciclib alone or roniciclib and sorafenib combination therapy. These findings support roniciclib as a potential drug for the treatment of patients with well-differentiated thyroid cancer.

Restricted access

Dan Luo, Shaohua Zhan, Wenchao Xia, Liang Huang, Wei Ge and Tianxiao Wang

Lymph node metastasis (LNM) in papillary thyroid cancer (PTC) is related to increased risk of recurrence and poor prognosis. Tumour exosomes have been shown to be associated with metastasis of cancer cells. Therefore, we aim to identify the characteristics and biological functions of serum exosomes in lymph node metastases of PTC. We compared proteome profiles of serum-purified exosomes (SPEs) from PTC patients with LNM, PTC patients without LNM, and healthy donors, using a combination of liquid chromatography-tandem mass spectroscopy analyses and tandem mass tag label quantitation analysis. We identified 1569 proteins by two or more unique peptides. Compared with the SPEs of PTC patients without LNM, we found 697 differentially expressed proteins in the SPEs of PTC patients with LNM. Our results revealed overexpression of specific proteins with well-established links to cancer cell metastasis, such as SRC, TLN1, ITGB2 and CAPNS1. Consistent with mass spectrum results, we performed Western blot to detect the expression of these proteins in individual sample. Biological pathway analyses showed that integrin signalling was aberrantly activated in the SPEs of PTC patients with LNM compared to those without LNM. Our study reveals that SPEs of PTC patients with lymph node metastases promote BHT101 thyroid cancer cell invasiveness, but have no apparent influence on cell migration. In the serum exosomes of PTC patients with LNM, integrin-associated proteins are obviously upregulated. These proteomic findings will contribute to elucidation of the pathophysiological functions of tumour-derived exosomes.

Restricted access

Na Li, Huanni Li, Lanqin Cao and Xianquan Zhan

Mitochondria play important roles in growth, signal transduction, division, tumorigenesis and energy metabolism in epithelial ovarian carcinomas (EOCs) without an effective biomarker. To investigate the proteomic profile of EOC mitochondrial proteins, a 6-plex isobaric tag for relative and absolute quantification (iTRAQ) proteomics was used to identify mitochondrial expressed proteins (mtEPs) in EOCs relative to controls, followed by an integrative analysis of the identified mtEPs and the Cancer Genome Atlas (TCGA) data from 419 patients. A total of 5115 quantified proteins were identified from purified mitochondrial samples, and 262 proteins were significantly related to overall survival in EOC patients. Furthermore, 63 proteins were identified as potential biomarkers for the development of an EOC, and our findings were consistent with previous reports on a certain extent. Pathway network analysis identified 70 signaling pathways. Interestingly, the results demonstrated that cancer cells exhibited an increased dependence on mitophagy, such as peroxisome, phagosome, lysosome, valine, leucine and isoleucine degradation and fatty acid degradation pathways, which might play an important role in EOC invasion and metastasis. Five proteins (GLDC, PCK2, IDH2, CPT2 and HMGCS2) located in the mitochondrion and enriched pathways were selected for further analysis in an EOC cell line and tissues, and the results confirmed reliability of iTRAQ proteomics. These findings provide a large-scale mitochondrial proteomic profiling with quantitative information, a certain number of potential protein biomarkers and a novel vision in the mitophagy bio-mechanism of a human ovarian carcinoma.

Restricted access

Elke Tatjana Aristizabal Prada, Gerald Spöttl, Julian Maurer, Michael Lauseker, Eva Jolanthe Koziolek, Jörg Schrader, Ashley Grossman, Karel Pacak, Felix Beuschlein, Christoph Joseph Auernhammer and Svenja Nölting

Pancreatic neuroendocrine tumors (panNETs) are often inoperable at diagnosis. The mTORC1 inhibitor everolimus has been approved for the treatment of advanced NETs. However, the regular development of resistance to everolimus limits its clinical efficacy. We established two independent everolimus-resistant panNET (BON1) cell lines (BON1 RR1, BON1 RR2) to find potential mechanisms of resistance. After 24 weeks of permanent exposure to 10 nM everolimus, BON1 RR1 and BON1 RR2 showed stable resistance with cellular survival rates of 96.70% (IC50 = 5200 nM) and 92.30% (IC50 = 2500 nM), respectively. The control cell line showed sensitivity to 10 nM everolimus with cellular survival declining to 54.70% (IC50 = 34 nM). Both resistant cell lines did not regain sensitivity over time and showed persistent stable resistance after a drug holiday of 13 weeks. The mechanisms of resistance in our cell line model included morphological adaptations, G1 cell cycle arrest associated with reduced CDK1(cdc2) expression and decreased autophagy. Cellular migration potential was increased and indirectly linked to c-Met activation. GSK3 was over-activated in association with reduced baseline IRS-1 protein levels. Specific GSK3 inhibition strongly decreased BON1 RR1/RR2 cell survival. The combination of everolimus with the PI3Kα inhibitor BYL719 re-established everolimus sensitivity through GSK3 inhibition and restoration of autophagy. We suggest that GSK3 over-activation combined with decreased baseline IRS-1 protein levels and decreased autophagy may be a crucial feature of everolimus resistance, and hence, a possible therapeutic target.

Restricted access

S Kato, M F Liberona, J Cerda-Infante, M Sánchez, J Henríquez, C Bizama, M L Bravo, P Gonzalez, R Gejman, J Brañes, K García, C Ibañez, G I Owen, J C Roa, V Montecinos and M A Cuello

Cell plasticity of ‘stem-like’ cancer-initiating cells (CICs) is a hallmark of cancer, allowing metastasis and cancer progression. Here, we studied whether simvastatin, a lipophilic statin, could impair the metastatic potential of CICs in high-grade serous ovarian cancer (HGS-ovC), the most lethal among the gynecologic malignancies. qPCR, immunoblotting and immunohistochemistry were used to assess simvastatin effects on proteins involved in stemness and epithelial-mesenchymal cell plasticity (EMT). Its effects on tumor growth and metastasis were evaluated using different models (e.g., spheroid formation and migration assays, matrigel invasion assays, 3D-mesomimetic models and cancer xenografts). We explored also the clinical benefit of statins by comparing survival outcomes among statin users vs non-users. Herein, we demonstrated that simvastatin modifies the stemness and EMT marker expression patterns (both in mRNA and protein levels) and severely impairs the spheroid assembly of CICs. Consequently, CICs become less metastatic in 3D-mesomimetic models and show fewer ascites/tumor burden in HGS-ovC xenografts. The principal mechanism behind statin-mediated effects involves the inactivation of the Hippo/YAP/RhoA pathway in a mevalonate synthesis-dependent manner. From a clinical perspective, statin users seem to experience better survival and quality of life when compared with non-users. Considering the high cost and the low response rates obtained with many of the current therapies, the use of orally or intraperitoneally administered simvastatin offers a cost/effective and safe alternative to treat and potentially prevent recurrent HGS-ovCs.

Restricted access

Juan Pablo Petiti, Liliana del Valle Sosa, Florencia Picech, Gabriela Deisi Moyano Crespo, Jean Zander Arevalo Rojas, Pablo Anibal Pérez, Carolina Beatriz Guido, Carolina Leimgruber, María Eugenia Sabatino, Pedro García, Verónica Bengio, Francisco Roque Papalini, Paula Estario, Celina Berhard, Marcos Villarreal, Silvina Gutiérrez, Ana Lucía De Paul, Jorge Humberto Mukdsi and Alicia Inés Torres

In pituitary adenomas, early recurrences and resistance to conventional pharmacotherapies are common, but the mechanisms involved are still not understood. The high expression of epidermal growth factor receptor 2 (HER2)/extracellular signal-regulated kinase (ERK1/2) signal observed in human pituitary adenomas, together with the low levels of the antimitogenic transforming growth factor beta receptor 2 (TBR2), encouraged us to evaluate the effect of the specific HER2 inhibition with trastuzumab on experimental pituitary tumor cell growth and its effect on the antiproliferative response to TGFB1. Trastuzumab decreased the pituitary tumor growth as well as the expression of ERK1/2 and the cell cycle regulators CCND1 and CDK4. The HER2/ERK1/2 pathway is an attractive therapeutic target, but its intricate relations with other signaling modulators still need to be unraveled. Thus, we investigated possible cross-talk with TGFB signaling, which has not yet been studied in pituitary tumors. In tumoral GH3 cells, co-incubation with trastuzumab and TGFB1 significantly decreased cell proliferation, an effect accompanied by a reduction in ERK1/2 phosphorylation, an increase of SMAD2/3 activation. In addition, through immunoprecipitation assays, a diminution of SMAD2/3-ERK1/2 and an increase SMAD2/3–TGFBR1 interactions were observed when cells were co-incubated with trastuzumab and TGFB1. These findings indicate that blocking HER2 by trastuzumab inhibited pituitary tumor growth and modulated HER2/ERK1/2 signaling and consequently the anti-mitogenic TGFB1/TBRs/SMADs cascade. The imbalance between HER2 and TGFBRs expression observed in human adenomas and the response to trastuzumab on experimental tumor growth may make the HER2/ERK1/2 pathway an attractive target for future pituitary adenoma therapy.

Restricted access

M Principe, M Chanal, V Karam, A Wierinckx, I Mikaélian, R Gadet, C Auger, V Raverot, E Jouanneau, A Vasiljevic, A Hennino, G Raverot and P Bertolino

Prolactinoma represents the most frequent hormone-secreting pituitary tumours. These tumours appear in a benign form, but some of them can reach an invasive and aggressive stage through an unknown mechanism. Discovering markers to identify prolactinoma proliferative and invading character is therefore crucial to develop new diagnostic/prognostic strategies. Interestingly, members of the TGFβ-Activin/BMP signalling pathways have emerged as important actors of pituitary development and adult function, but their role in prolactinomas remains to be precisely determined. Here, using a heterotopic allograft model derived from a rat prolactinoma, we report that the Activins orphan type I receptor ALK7 is ectopically expressed in prolactinomas-cells. Through immunohistological approaches, we further confirm that normal prolactin-producing cells lack ALK7-expression. Using a series of human tumour samples, we show that ALK7 expression in prolactinomas cells is evolutionary conserved between rat and human. More interestingly, our results highlight that tumours showing a robust expression of ALK7 present an increased proliferation as address by Ki67 expression and retrospective analysis of clinical data from 38 patients, presenting ALK7 as an appealing marker of prolactinoma aggressiveness. Beside this observation, our work pinpoints that the expression of prolactin is highly heterogeneous in prolactinoma cells. We further confirm the contribution of ALK7 in these observations and the existence of highly immunoreactive prolactin cells lacking ALK7 expression. Taken together, our observations suggest that Activin signalling mediated through ALK7 could therefore contribute to the hormonal heterogeneity and increased proliferation of prolactinomas.

Free access

Federica Grillo, Tullio Florio, Francesco Ferraù, Elda Kara, Giuseppe Fanciulli, Antongiulio Faggiano, Annamaria Colao and NIKE Group

In the last few years, the therapeutic approach for neuroendocrine neoplasms (NENs) has changed dramatically following the approval of several novel targeted treatments. The multitarget tyrosine kinase inhibitor (MTKI), sunitinib malate, has been approved by Regulatory Agencies in pancreatic NENs. The MTKI class, however, includes several other molecules (approved for other conditions), which are currently being studied in NENs. An in-depth review on the studies published on the MTKIs in neuroendocrine tumors such as axitinib, cabozantinib, famitinib, lenvatinib, nintedanib, pazopanib, sorafenib and sulfatinib was performed. Furthermore, we extensively searched on the Clinical Trial Registries databases worldwide, in order to collect information on the ongoing clinical trials related to this topic. Our systematic analysis on emerging MTKIs in the treatment of gastroenteropancreatic and lung NENs identifies in vitro and in vivo studies, which demonstrate anti-tumor activity of diverse MTKIs on neuroendocrine cells and tumors. Moreover, for the first time in the literature, we report an updated view concerning the upcoming clinical trials in this field: presently, phase I, II and III clinical trials are ongoing and will include, overall, a staggering 1667 patients. This fervid activity underlines the increasing interest of the scientific community in the use of emerging MTKIs in NEN treatment.