Browse

You are looking at 1 - 10 of 2,111 items for

Restricted access

Xhesika Shanja-Grabarz, Anouchka Coste, David Entenberg and Antonio Di Cristofano

Genetically engineered and orthotopic xenograft mouse models have been instrumental for increasing our understanding of thyroid cancer progression and for the development of novel therapeutic approaches in a setting that is more physiologically relevant than the classical subcutaneous flank implants. However, the anatomical location of the thyroid gland precludes a non-invasive analysis at the cellular level of the interactions between tumor cells and the surrounding microenvironment and does not allow a real-time evaluation of the response of tumor cells to drug treatments. As a consequence, such studies have generally only relied on endpoint approaches, limiting the amount and depth of the information that could be gathered. Here we describe the development of an innovative approach to imaging specific aspects of thyroid cancer biology, based on the implantation of a permanent, minimally invasive optical window that allows high-resolution, multi-day, intravital imaging of the behavior and cellular dynamics of thyroid tumors in the mouse. We show that this technology allows visualization of fluorescently tagged tumor cells both in immunocompetent, genetically engineered mouse models of anaplastic thyroid cancer (ATC) and in immunocompromised mice carrying orthotopic implanted human or mouse ATC cells. Furthermore, the use of recipient mice in which endothelial cells and macrophages are fluorescently labeled allows the detection of the spatial and functional relationship between tumor cells and their microenvironment. Finally, we show that ATC cells expressing a fluorescent biosensor for caspase 3 activity can be effectively utilized to evaluate, in real-time, the efficacy and kinetics of action of novel small molecule therapeutics. This novel approach to intravital imaging of thyroid cancer represents a platform that will allow, for the first time, the longitudinal, in situ analysis of tumor cell responses to therapy and of their interaction with the microenvironment.

Restricted access

Andrea Gutierrez Maria, Christina Tatsi, Annabel Berthon, Ludivine Drougat, Nikolaos Settas, Fady Hannah-Shmouni, Jerome Bertherat, Fabio R Faucz and Constantine A Stratakis

Mutations in the protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) and armadillo repeat-containing 5 (ARMC5) genes cause Cushing‘s syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD) and primary bilateral macronodular adrenocortical hyperplasia (PBMAH), respectively. Between the two genes, ARMC5 is highly polymorphic with several variants in the population, whereas PRKAR1A has very little, if any, non-pathogenic variation in its coding sequence. We tested the hypothesis that ARMC5 variants may affect the clinical presentation of PPNAD and CS among patients with PRKAR1A mutations. In this study, 91 patients with PPNAD due to PRKAR1A mutations were tested for abnormal cortisol secretion or CS and for ARMC5 sequence variants. Abnormal cortisol secretion was present in 71 of 74 patients with ARMC5 variants, whereas 11 of 17 patients negative for ARMC5 variants did not have hypercortisolemia. The presence of ARMC5 variants was a statistically strong predictor of CS among patients with PRKAR1A mutations (P < 0.001). Among patients with CS due to PPNAD, ARMC5 variants were associated with lower cortisol levels at baseline (P = 0.04) and after high dose dexamethasone administration (P = 0.02). The ARMC5 p.I170V variant increased ARMC5 protein accumulation in vitro and decreased viability of NCI-H295 cells (but not HEK 293T cells). PPNAD tissues with ARMC5 variants showed stronger ARMC5 protein expression than those that carried a normal ARMC5 sequence. Taken together, our results suggest that ARMC5 variants among patients with PPNAD due to PRKAR1A defects may play the role of a genetic modifier for the presence and severity of hypercortisolemia.

Free access

Jennifer W Carlisle, Caroline S Jansen, Mehmet Asim Bilen and Haydn Kissick

Free access

Neil A Bhowmick, Jillian Oft, Tanya Dorff, Sumanta Pal, Neeraj Agarwal, Robert A Figlin, Edwin M Posadas, Stephen J Freedland and Jun Gong

The current pandemic (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health challenge with active development of antiviral drugs and vaccines seeking to reduce its significant disease burden. Early reports have confirmed that transmembrane serine protease 2 (TMPRSS2) and angiotensin converting enzyme 2 (ACE2) are critical targets of SARS-CoV-2 that facilitate viral entry into host cells. TMPRSS2 and ACE2 are expressed in multiple human tissues beyond the lung including the testes where predisposition to SARS-CoV-2 infection may exist. TMPRSS2 is an androgen-responsive gene and its fusion represents one of the most frequent alterations in prostate cancer. Androgen suppression by androgen deprivation therapy and androgen receptor signaling inhibitors form the foundation of prostate cancer treatment. In this review, we highlight the growing evidence in support of androgen regulation of TMPRSS2 and ACE2 and the potential clinical implications of using androgen suppression to downregulate TMPRSS2 to target SARS-CoV-2. We also discuss the future directions and controversies that need to be addressed in order to establish the viability of targeting TMPRSS2 and/or ACE2 through androgen signaling regulation for COVID-19 treatment, particularly its relevance in the context of prostate cancer management.

Restricted access

Douglas Wiseman, James D McDonald, Dhaval Patel, Electron Kebebew, Karel Pacak and Naris Nilubol

Postoperative hypotension frequently occurs after resection of pheochromocytoma and/or paraganglioma (PPGLs). Epidural anesthesia (EA) is often used for pain control in open resection of these tumors; one of its side effects is hypotension. Our aim is to determine if EA is associated with an increased risk of postoperative hypotension after open resection of PPGLs. We conducted a retrospective review of patients who underwent open resection of PPGLs at the National Institutes of Health from 2004 to 2019. Clinical and perioperative parameters were analyzed by the use of EA. The primary endpoint was postoperative hypotension. Ninety-seven patients (46 female and 51 male; mean age, 38.5 years) underwent open resection of PPGLs and 69 (71.1%) received EA. Patients with EA had a higher rate beta-blocker use (79.7% vs 57.1%, P = 0.041), metastasis (69.6% vs 39.3%, P = 0.011), and were more frequently hypotensive after surgery (58.8% vs 25.0%, P = 0.003) compared to those without EA. Patients with postoperative hypotension had higher plasma normetanephrines than those without (7.3 fold vs 4.1 fold above the upper limit of normal, P = 0.018). Independent factors associated with postoperative hypotension include the use of beta-blockers (HR = 3.35 (95% CI: 1.16–9.67), P = 0.026) and EA (HR = 3.49 (95% CI: 1.25–9.76), P = 0.017). Data from this retrospective study suggest that, in patients with open resection of PPGLs, EA is an independent risk factor for early postoperative hypotension. Special caution is required in patients on beta-blockade. A prospective evaluation with standardized protocols for the use of EA and management of hemodynamic variability is necessary.

Open access

Andreas M Hoff, Sigrid M Kraggerud, Sharmini Alagaratnam, Kaja C G Berg, Bjarne Johannessen, Maren Høland, Gro Nilsen, Ole C Lingjærde, Peter W Andrews, Ragnhild A Lothe and Rolf I Skotheim

Testicular germ cell tumours (TGCTs) appear as different histological subtypes or mixtures of these. They show similar, multiple DNA copy number changes, where gain of 12p is pathognomonic. However, few high-resolution analyses have been performed and focal DNA copy number changes with corresponding candidate target genes remain poorly described for individual subtypes. We present the first high-resolution DNA copy number aberration (CNA) analysis on the subtype embryonal carcinomas (ECs), including 13 primary ECs and 5 EC cell lines. We identified recurrent gains and losses and allele-specific CNAs. Within these regions, we nominate 30 genes that may be of interest to the EC subtype. By in silico analysis of data from 150 TGCTs from The Cancer Genome Atlas (TCGA), we further investigated CNAs, RNA expression, somatic mutations and fusion transcripts of these genes. Among primary ECs, ploidy ranged between 2.3 and 5.0, and the most common aberrations were DNA copy number gains at chromosome (arm) 7, 8, 12p, and 17, losses at 4, 10, 11, and 18, replicating known TGCT genome characteristics. Gain of whole or parts of 12p was found in all samples, including a highly amplified 100 kbp segment at 12p13.31, containing SLC2A3. Gain at 7p21, encompassing ETV1, was the second most frequent aberration. In conclusion, we present novel CNAs and the genes located within these regions, where the copy number gain of SLC2A3 and ETV1 are of interest, and which copy number levels also correlate with expression in TGCTs.

Restricted access

Yulong Li, Jianhua Zhang, Poorni R Adikaram, James Welch, Bin Guan, Lee S Weinstein, Haobin Chen and William F Simonds

Mutation of the CDC73 gene, which encodes parafibromin, has been linked with parathyroid cancer. However, no correlation between genotypes of germline CDC73 mutations and the risk of parathyroid cancer has been known. In this study, subjects with germline CDC73 mutations were identified from the participants of two clinical protocols at National Institutes of Health (Discovery Cohort) and from the literature (Validation Cohort). The relative risk of developing parathyroid cancer was analyzed as a function of CDC73 genotype, and the impact of representative mutations on structure of parafibromin was compared between genotype groups. A total of 419 subjects, 68 in Discovery Cohort and 351 in Validation Cohort, were included. In both cohorts, percentages of CDC73 germline mutations that predicted significant conformational disruption or loss of expression of parafibromin (referred as ‘high-impact mutations’) were significantly higher among the subjects with parathyroid cancers compared to all other subjects. The Kaplan–Meier analysis showed that high-impact mutations were associated with a 6.6-fold higher risk of parathyroid carcinoma compared to low-impact mutations, despite a similar risk of developing primary hyperparathyroidism between two groups. Disruption of the C-terminal domain (CTD) of parafibromin is directly involved in predisposition to parathyroid carcinoma, since only the mutations impacting this domain were associated with an increased risk of parathyroid carcinoma. Structural analysis revealed that a conserved surface structure in the CTD is universally disrupted by the mutations affecting this domain. In conclusion, high-impact germline CDC73 mutations were found to increase risk of parathyroid carcinoma by disrupting the CTD of parafibromin.

Free access

Tim J Takkenkamp, Mathilde Jalving, Frederik J H Hoogwater and Annemiek M E Walenkamp

Immunotherapy in the form of immune checkpoint inhibitors (ICIs) has transformed the treatment landscape in numerous types of advanced cancer. However, the majority of patients do not benefit from this treatment modality. Although data are scarce, in general, patients with low-grade neuroendocrine tumours (NETs) do not benefit from treatment with ICIs in contrast to patients with neuroendocrine carcinoma, in which a small subgroup of patients may benefit. Low- and intermediate-grade NETs predominantly lack factors associated with response to ICIs treatment, like immune cell infiltration, and have an immunosuppressive tumour metabolism and microenvironment. In addition, because of its potential influence on the response to ICIs, major interest has been shown in the tryptophan-degrading enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). These enzymes work along the kynurenine pathway that deplete tryptophan in the tumour microenvironment. IDO and TDO are especially of interest in NETs since some tumours produce serotonin but the majority do not, which potentially deplete the precursor tryptophan. In this review, we summarize the current knowledge on the immune tumour microenvironment of neuroendocrine tumours and implications for treatment with immune checkpoint inhibitors. We also discuss (targetable) factors in the NET tumour microenvironment that potentially modulate the anti-cancer immune response.

Free access

Jack Junjie Chan, Yirong Sim, Samuel Guan Wei Ow, Joline Si Jing Lim, Grace Kusumawidjaja, Qingyuan Zhuang, Ru Xin Wong, Fuh Yong Wong, Veronique Kiak Mien Tan and Tira Jing Ying Tan

The ensuing COVID-19 pandemic poses unprecedented and daunting challenges to the routine delivery of oncological and supportive care to patients with breast cancer. Considerations include the infective risk of patients who are inherently immunosuppressed from their malignancy and therapies, long-term oncological outcomes from the treatment decisions undertaken during this extraordinary period, and diverted healthcare resources to support a coordinated whole-of-society outbreak response. In this review, we chronicle the repercussions of the COVID-19 outbreak on breast cancer management in Singapore and describe our approach to triaging and prioritising care of breast tumours. We further propose adaptations to established clinical processes and practices across the different specialties involved in breast oncology, with references to the relevant evidence base or expert consensus guidelines. These recommendations have been developed within the unique context of Singapore’s public healthcare sector. They can serve as a resource to guide breast cancer management for future contingencies in this city-state, while certain elements therein may be extrapolatable to other medical systems during this global public health emergency.