Browse

You are looking at 101 - 110 of 2,067 items

Full access

James Koh, Joyce A Hogue, Sanziana A Roman, Randall P Scheri, Hèléne Fradin, David L Corcoran and Julie A Sosa

The clinical presentation of primary hyperparathyroidism (PHPT) varies widely, although the underlying mechanistic reasons for this disparity remain unknown. We recently reported that parathyroid tumors can be functionally segregated into two distinct groups on the basis of their relative responsiveness to ambient calcium, and that patients in these groups differ significantly in their likelihood of manifesting bone disability. To examine the molecular basis for this phenotypic variation in PHPT, we compared the global gene expression profiles of calcium-sensitive and calcium-resistant parathyroid tumors. RNAseq and proteomic analysis identified a candidate set of differentially expressed genes highly correlated with calcium-sensing capacity. Subsequent quantitative assessment of the expression levels of these genes in an independent cohort of parathyroid tumors confirmed that calcium-sensitive tumors cluster in a discrete transcriptional profile group. These data indicate that PHPT is not an etiologically monolithic disorder and suggest that divergent molecular mechanisms could drive the observed phenotypic differences in PHPT disease course, provenance, and outcome.

Full access

Antonio De la Vieja and Pilar Santisteban

Iodide (I) metabolism is crucial for the synthesis of thyroid hormones (THs) in the thyroid and the subsequent action of these hormones in the organism. I is principally transported by the sodium iodide symporter (NIS) and by the anion exchanger PENDRIN, and recent studies have demonstrated the direct participation of new transporters including anoctamin 1 (ANO1), cystic fibrosis transmembrane conductance regulator (CFTR) and sodium multivitamin transporter (SMVT). Several of these transporters have been found expressed in various tissues, implicating them in I recycling. New research supports the exciting idea that I participates as a protective antioxidant and can be oxidized to hypoiodite, a potent oxidant involved in the host defense against microorganisms. This was possibly the original role of I in biological systems, before the appearance of TH in evolution. I per se participates in its own regulation, and new evidence indicates that it may be antineoplastic, anti-proliferative and cytotoxic in human cancer. Alterations in the expression of I transporters are associated with tumor development in a cancer-type-dependent manner and, accordingly, NIS, CFTR and ANO1 have been proposed as tumor markers. Radioactive iodide has been the mainstay adjuvant treatment for thyroid cancer for the last seven decades by virtue of its active transport by NIS. The rapid advancement of techniques that detect radioisotopes, in particular I, has made NIS a preferred target-specific theranostic agent.

Full access

Joseph M Shulan, Leonid Vydro, Arthur B Schneider and Dan V Mihailescu

With increasing numbers of childhood cancer survivors who were treated with radiation, there is a need to evaluate potential biomarkers that could signal an increased risk of developing thyroid cancer. We aimed to examine the relationships between thyrotropin and thyroglobulin levels and the risk of developing thyroid nodules and cancer in a cohort of radiation-exposed children. 764 subjects who were irradiated in the neck area as children were examined and followed for up to 25 years. All subjects underwent a clinical examination, measurements of thyrotropin, thyroglobulin levels and thyroid imaging. At baseline, 216 subjects had thyroid nodules and 548 did not. Of those with nodules, 176 underwent surgery with 55 confirmed thyroid cancers. During the follow-up, 147 subjects developed thyroid nodules including 22 with thyroid cancer. Thyroglobulin levels were higher in subjects with prevalent thyroid nodules (26.1 ng/mL vs 9.37 ng/mL; P < 0.001) and in those who had an initial normal examination but later developed thyroid nodules (11.2 ng/mL vs 8.87 ng/mL; P = 0.017). There was no relationship between baseline thyrotropin levels and the prevalent presence or absence of thyroid nodules, whether a prevalent neoplasm was benign or malignant, subsequent development of thyroid nodules during follow-up or whether an incident nodule was benign or malignant. In conclusion, in radiation-exposed children, higher thyroglobulin levels indicated an increased risk of developing thyroid nodules but did not differentiate between benign and malignant neoplasms. There was no association between the baseline TSH level and the risk of developing thyroid nodules or cancer.

Full access

Isabel Amendoeira, Tiago Maia and Manuel Sobrinho-Simões

The 2017 edition of the WHO book on Classification of Tumours of Endocrine Organs includes a new section entitled ‘Other encapsulated follicular-patterned thyroid tumours’, in which the newly created NIFTP (non-invasive follicular thyroid neoplasm with papillary-like nuclear features) is identified and described in detail. Despite deleting the word ‘carcinoma’ from its name, NIFTP is not a benign tumor either and is best regarded as a neoplasm with ‘very low malignant potential’. The main goal of the introduction of NIFTP category is to prevent overdiagnosis and overtreatment. Sampling constraints, especially when dealing with heterogeneous and/or large nodules, and difficulties in the invasiveness evaluation, are the major weaknesses of the histological characterization of NIFTP. At the cytological level, NIFTP can be separated from classic papillary carcinoma (cPTC) but not from encapsulated, invasive follicular variant PTC. The impact of NIFTP individualization for cytopathology is the drop of rates of malignancy for each Bethesda category in general and for indeterminate categories in particular. The biggest impact will be seen in institutions with a high frequency of FVPTC. The introduction of NIFTP has changed the utility of predictive values of molecular tests because RAS mutations and PAX8-PPARg rearrangements are frequently detected in NIFTP. This turns less promising the application of mutation detection panels as indicators of malignancy and will probably contribute to switch to a rule-out approach of molecular testing. Selection for surgery will go on being determined by a combined detection of clinical, cytological and ultrasound suspicious features.

Full access

Carolyn M Klinge

The human genome is ‘pervasively transcribed’ leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the ‘expanding universe’ of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA’s 3′ untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.

Full access

Tobias Hofving, Yvonne Arvidsson, Bilal Almobarak, Linda Inge, Roswitha Pfragner, Marta Persson, Göran Stenman, Erik Kristiansson, Viktor Johanson and Ola Nilsson

Full access

Marta Kaczmarek-Ryś, Katarzyna Ziemnicka, Andrzej Pławski, Bartłomiej Budny, Michał Michalak, Szymon Hryhorowicz, Justyna Hoppe-Gołębiewska, Paweł Boruń, Monika Gołąb, Małgorzata Czetwertyńska, Maria Sromek, Marlena Szalata, Marek Ruchała and Ryszard Słomski

The clinical course of medullary thyroid carcinoma (MTC) associated with the MEN2A syndrome as well as of sporadic MTC shows considerable heterogeneity. The disease picture varies not only between the same RET proto-oncogene mutation carriers but also among sporadic MTC patients with no RET germinal mutations, which suggests the involvement of additional modulators of the disease. However, genetic factors responsible for this heterogeneity of the MTC clinical course still remain unknown. The aim of this study was to determine if polymorphic variants or specific haplotypes of the RET gene may modify the MTC clinical course. We genotyped the following loci: c.73+9277T>C, c.135G>A, c.1296A>G, c.2071G>A, c.2307T>C, c.2508C>T and c.2712C>G in 142 MTC patients and controls. We demonstrated considerable differences in the genotypes distribution within c.73+9277T>C, c.135G>A and c.2307T>C loci. Our results show that the c.73+9277T variant associated with a decreased activity of the MCS+9.7 RET enhancer is rare in hereditary MTC patients with primary hyperparathyroidism, and thus, may influence the MTC clinical picture. The decreased activity of the RET promoter enhancer reduces RET expression level and may counterbalance the activating mutation in this gene. Frequent co-occurrence of the c.73+9277T allele with p.E768D, p.Y791F, p.V804M or p.R844Q RET mutations may be associated with their attenuation and milder clinical picture of the disease. Haplotypes analysis showed that C-G-A-G-T-(C)-C (c.73+9277T>C – c.135G>A – c.1296A>G – c.2071G>A – c.2307T>G – (c.2508C>T) – c.2712C>G) alleles combination predisposes to pheochromocytomas and primary hyperparathyroidism. We consider that RET haplotypes defining may become an auxiliary diagnostic tool in MTC patients.

Open access

Douglas A Gibson, Frances Collins, Fiona L Cousins, Arantza Esnal Zufiaurre and Philippa T K Saunders

Endometrial cancer (EC) is the most common gynaecological malignancy. Obesity is a major risk factor for EC and is associated with elevated cholesterol. 27-hydroxycholesterol (27HC) is a cholesterol metabolite that functions as an endogenous agonist for Liver X receptor (LXR) and a selective oestrogen receptor modulator (SERM). Exposure to oestrogenic ligands increases risk of developing EC; however, the impact of 27HC on EC is unknown. Samples of stage 1 EC (n = 126) were collected from postmenopausal women undergoing hysterectomy. Expression of LXRs (NR1H3, LXRα; NR1H2, LXRβ) and enzymes required for the synthesis (CYP27A1) or breakdown (CYP7B1) of 27HC were detected in all grades of EC. Cell lines originating from well-, moderate- and poorly-differentiated ECs (Ishikawa, RL95, MFE 280 respectively) were used to assess the impact of 27HC or the LXR agonist GW3965 on proliferation or expression of a luciferase reporter gene under the control of LXR- or ER-dependent promoters (LXRE, ERE). Incubation with 27HC or GW3965 increased transcription via LXRE in Ishikawa, RL95 and MFE 280 cells (P < 0.01). 27HC selectively activated ER-dependent transcription (P < 0.001) in Ishikawa cells and promoted proliferation of both Ishikawa and RL95 cells (P < 0.001). In MFE 280 cells, 27HC did not alter proliferation but selective targeting of LXR with GW3965 significantly reduced cell proliferation (P < 0.0001). These novel results suggest that 27HC can contribute to risk of EC by promoting proliferation of endometrial cancer epithelial cells and highlight LXR as a potential therapeutic target in the treatment of advanced disease.

Full access

Päivi Järvensivu, Taija Heinosalo, Janne Hakkarainen, Pauliina Kronqvist, Niina Saarinen and Matti Poutanen

Hydroxysteroid (17-beta) dehydrogenase type 1 (HSD17B1) converts low-active estrogen estrone to highly active estradiol. Estradiol is necessary for normal postpubertal mammary gland development; however, elevated estradiol levels increase mammary tumorigenesis. To investigate the significance of the human HSD17B1 enzyme in the mammary gland, transgenic mice universally overexpressing human HSD17B1 were used (HSD17B1TG mice). Mammary glands obtained from HSD17B1TG females at different ages were investigated for morphology and histology, and HSD17B1 activity and estrogen receptor activation in mammary gland tissue were assessed. To study the significance of HSD17B1 enzyme expression locally in mammary gland tissue, HSD17B1-expressing mammary epithelium was transplanted into cleared mammary fat pads of wild-type females, and the effects on mammary gland estradiol production, epithelial cells and the myoepithelium were investigated. HSD17B1TG females showed increased estrone to estradiol conversion and estrogen-response element-driven estrogen receptor signaling in mammary gland tissue, and they showed extensive lobuloalveolar development that was further enhanced by age along with an increase in serum prolactin concentrations. At old age, HSD17B1TG females developed mammary cancers. Mammary-restricted HSD17B1 expression induced lesions at the sites of ducts and alveoli, accompanied by peri- and intraductal inflammation and disruption of the myoepithelial cell layer. The lesions were shown to be estrogen dependent, as treatment with an antiestrogen, ICI 182,780, starting when lesions were already established reversed the phenotype. These data elucidate the ability of human HSD17B1 to enhance estrogen action in the mammary gland in vivo and indicate that HSD17B1 is a factor inducing phenotypic alterations associated with mammary tumorigenesis.

Full access

Mark A White, Efrosini Tsouko, Chenchu Lin, Kimal Rajapakshe, Jeffrey M Spencer, Sandi R Wilkenfeld, Sheiva S Vakili, Thomas L Pulliam, Dominik Awad, Fotis Nikolos, Rajasekhara Reddy Katreddy, Benny Abraham Kaipparettu, Arun Sreekumar, Xiaoliu Zhang, Edwin Cheung, Cristian Coarfa and Daniel E Frigo

Despite altered metabolism being an accepted hallmark of cancer, it is still not completely understood which signaling pathways regulate these processes. Given the central role of androgen receptor (AR) signaling in prostate cancer, we hypothesized that AR could promote prostate cancer cell growth in part through increasing glucose uptake via the expression of distinct glucose transporters. Here, we determined that AR directly increased the expression of SLC2A12, the gene that encodes the glucose transporter GLUT12. In support of these findings, gene signatures of AR activity correlated with SLC2A12 expression in multiple clinical cohorts. Functionally, GLUT12 was required for maximal androgen-mediated glucose uptake and cell growth in LNCaP and VCaP cells. Knockdown of GLUT12 also decreased the growth of C4-2, 22Rv1 and AR-negative PC-3 cells. This latter observation corresponded with a significant reduction in glucose uptake, indicating that additional signaling mechanisms could augment GLUT12 function in an AR-independent manner. Interestingly, GLUT12 trafficking to the plasma membrane was modulated by calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-5′-AMP-activated protein kinase (AMPK) signaling, a pathway we previously demonstrated to be a downstream effector of AR. Inhibition of CaMKK2-AMPK signaling decreased GLUT12 translocation to the plasma membrane by inhibiting the phosphorylation of TBC1D4, a known regulator of glucose transport. Further, AR increased TBC1D4 expression. Correspondingly, expression of TBC1D4 correlated with AR activity in prostate cancer patient samples. Taken together, these data demonstrate that prostate cancer cells can increase the functional levels of GLUT12 through multiple mechanisms to promote glucose uptake and subsequent cell growth.