Browse

You are looking at 31 - 40 of 2,101 items

Restricted access

Nicole Panarelli, Kathrin Tyryshkin, Justin Jong Mun Wong, Adrianna Majewski, Xiaojing Yang, Theresa Scognamiglio, Michelle Kang Kim, Kimberly Bogardus, Thomas Tuschl, Yao-Tseng Chen and Neil Renwick

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) can be challenging to evaluate histologically. MicroRNAs (miRNAs) are small RNA molecules that often are excellent biomarkers due to their abundance, cell-type and disease stage specificity and stability. To evaluate miRNAs as adjunct tissue markers for classifying and grading well-differentiated GEP-NETs, we generated and compared miRNA expression profiles from four pathological types of GEP-NETs. Using quantitative barcoded small RNA sequencing and state-of-the-art sequence annotation, we generated comprehensive miRNA expression profiles from archived pancreatic, ileal, appendiceal and rectal NETs. Following data preprocessing, we randomly assigned sample profiles to discovery (80%) and validation (20%) sets prior to data mining using machine-learning techniques. High expression analyses indicated that miR-375 was the most abundant individual miRNA and miRNA cistron in all samples. Leveraging prior knowledge that GEP-NET behavior is influenced by embryonic derivation, we developed a dual-layer hierarchical classifier for differentiating GEP-NET types. In the first layer, our classifier discriminated midgut (ileum, appendix) from non-midgut (rectum, pancreas) NETs based on miR-615 and -92b expression. In the second layer, our classifier discriminated ileal from appendiceal NETs based on miR-125b, -192 and -149 expression, and rectal from pancreatic NETs based on miR-429 and -487b expression. Our classifier achieved overall accuracies of 98.5% and 94.4% in discovery and validation sets, respectively. We also found provisional evidence that low- and intermediate-grade pancreatic NETs can be discriminated based on miR-328 expression. GEP-NETs can be reliably classified and potentially graded using a limited panel of miRNA markers, complementing morphological and immunohistochemistry-based approaches to histologic evaluation.

Restricted access

Bruno Heidi Nozima, Thais Biude Mendes, Gustavo José da Silva Pereira, Rodrigo Pinheiro Araldi, Edna Sadayo Miazato Iwamura, Soraya Soubhi Smaili, Gianna Maria Griz Carvalheira and Janete Maria Cerutti

We previously proposed that high expression of FAM129A can be used as a thyroid carcinoma biomarker in preoperative diagnostic exams of thyroid nodules. Here, we identify that FAM129A expression is increased under nutrient and growth factor depletion in a normal thyroid cell line (PCCL3), overlapping with increased expression of autophagy-related protein and inhibition of AKT/mTOR/p70S6K. Supplementation of insulin, TSH and serum to the medium was able to reduce the expression of both FAM129A and autophagy-related protein and reestablish the AKT/mTOR/p70S6K axis. To determine the direct role of FAM129A on autophagy, FAM129A was transfected into PCCL3 cells. Its overexpression induced autophagic vesicles formation, evidenced by transmission electron microscopy. Co-expression of FAM129A and mCherry-EGFP-LC3B in PCCL3 showed an increased yellow puncta formation, suggesting that FAM129Ainduces autophagy. To further confirm its role on autophagy, we knockdown FAM129A in two thyroid carcinoma cell lines (TPC1 and FTC-236). Unexpectedly, FAM129A silencing increased autophagic flux, suggesting that FAM129A inhibits autophagy in these models. We next co-transfected PCCL3 cells with FAM129A and RET/PTC1 and tested autophagy in this context. Co-expression of FAM129A and RET/PTC1 oncogene in PCCL3 cells, inhibited RET/PTC1-induced autophagy. Together, our data suggest that, in normal cells FAM129A induces autophagy in order to maintain cell homeostasis and provide substrates under starvation conditions. Instead, in cancer cells, decreased autophagy may help the cells to overcome cell death. FAM129A regulates autophagy in a cell- and/or context-dependent manner. Our data reinforce the concept that autophagy can be used as a strategy for cancer treatment.

Open access

James C Yao, Abhishek Garg, David Chen, Jaume Capdevila, Paul Engstrom, Rodney Pommier, Eric Van Cutsem, Simron Singh, Nicola Fazio, Wei He, Markus Riester, Parul Patel, Maurizio Voi, Michael Morrissey, Marianne E Pavel and Matthew H Kulke

Neuroendocrine tumors (NETs) have historically been subcategorized according to histologic features and the site of anatomic origin. Here, we characterize the genomic alterations in patients enrolled in 3 phase 3 clinical trials of NET of different anatomic origins and assessed the potential correlation with clinical outcomes. Whole-exome and targeted panel sequencing was used to characterize 225 NET samples collected in the RADIANT series of clinical trials. Genomic profiling of NET was analyzed along with nongenomic biomarker data on tumor grade and circulating chromogranin A (CgA) and neuron specific enolase (NSE) levels from these patients enrolled in clinical trials. Our results highlight recurrent large-scale chromosomal alterations as a common theme among NET. Although the specific pattern of chromosomal alterations differed between tumor subtypes, the evidence for generalized chromosomal instability (CIN) was observed across all primary sites of NET. In pancreatic NET, although the P-value was not significant, higher CIN suggests a trend towards longer survival (HR, 0.55, P=0.077); whereas in the gastrointestinal NET, lower CIN was associated with longer survival (HR, 0.44, P=0.0006). Our multivariate analyses demonstrated that when combined with other clinical data among patients with progressive advanced NETs, chromosomal level alteration adds important prognostic information. Large-scale CIN is a common feature of NET, and specific patterns of chromosomal gain and loss appeared to have independent prognostic value in NET subtypes. However, whether CIN in general has clinical significance in NET requires validation in larger patient cohort and warrants further mechanistic studies.

Open access

Milena Doroszko, Marcin Chrusciel, Joanna Stelmaszewska, Tomasz Slezak, Slawomir Anisimowicz, Ursula Plöckinger, Marcus Quinkler, Marco Bonomi, Slawomir Wolczynski, Ilpo Huhtaniemi, Jorma Toppari and Nafis A Rahman

Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11–13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.

Restricted access

T Vandamme, M Beyens, G Boons, A Schepers, K Kamp, K Biermann, P Pauwels, W W De Herder, L J Hofland, M Peeters, G Van Camp and K Op de Beeck

Mutations in DAXX/ATRX, MEN1 and genes involved in the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway have been implicated in pancreatic neuroendocrine neoplasms (pNENs). However, mainly mutations present in the majority of tumor cells have been identified, while proliferation-driving mutations could be present only in small fractions of the tumor. This study aims to identify high- and low-abundance mutations in pNENs using ultra-deep targeted resequencing. Formalin-fixed paraffin-embedded matched tumor-normal tissue of 38 well-differentiated pNENs was sequenced using a HaloPlex targeted resequencing panel. Novel amplicon-based algorithms were used to identify both single nucleotide variants (SNVs) and insertion-deletions (indels) present in >10% of reads (high abundance) and in <10% of reads (low abundance). Found variants were validated by Sanger sequencing. Sequencing resulted in 416,711,794 reads with an average target base coverage of 2663 ± 1476. Across all samples, 32 high-abundance somatic, 3 germline and 30 low-abundance mutations were withheld after filtering and validation. Overall, 92% of high-abundance and 84% of low-abundance mutations were predicted to be protein damaging. Frequently, mutated genes were MEN1, DAXX, ATRX, TSC2, PI3K/Akt/mTOR and MAPK-ERK pathway-related genes. Additionally, recurrent alterations on the same genomic position, so-called hotspot mutations, were found in DAXX, PTCH2 and CYFIP2. This first ultra-deep sequencing study highlighted genetic intra-tumor heterogeneity in pNEN, by the presence of low-abundance mutations. The importance of the ATRX/DAXX pathway was confirmed by the first-ever pNEN-specific protein-damaging hotspot mutation in DAXX. In this study, both novel genes, including the pro-apoptotic CYFIP2 gene and hedgehog signaling PTCH2, and novel pathways, such as the MAPK-ERK pathway, were implicated in pNEN.

Restricted access

Lautaro Zubeldía-Brenner, Catalina De Winne, Sofía Perrone, Santiago A Rodríguez-Seguí, Christophe Willems, Ana María Ornstein, Isabel Lacau-Mengido, Hugo Vankelecom, Carolina Cristina and Damasia Becu-Villalobos

Preclinical and clinical studies support that Notch signaling may play an important oncogenic role in cancer, but there is scarce information for pituitary tumors. We therefore undertook a functional study to evaluate Notch participation in pituitary adenoma growth. Tumors generated in Nude mice by subcutaneous GH3 somatolactotrope cell injection were treated in vivo with DAPT, a γ-secretase inhibitor, thus inactivating Notch signaling. This treatment led to pituitary tumor reduction, lower prolactin and GH tumor content and a decrease in angiogenesis. Furthermore, in silico transcriptomic and epigenomic analyses uncovered several tumor suppressor genes related to Notch signaling in pituitary tissue, namely Btg2, Nr4a1, Men1, Zfp36 and Cnot1. Gene evaluation suggested that Btg2, Nr4a1 and Cnot1 may be possible players in GH3 xenograft growth. Btg2 mRNA expression was lower in GH3 tumors compared to the parental line, and DAPT increased its expression levels in the tumor in parallel with the inhibition of its volume. Cnot1 mRNA levels were also increased in the pituitary xenografts by DAPT treatment. And the Nr4a1 gene was lower in tumors compared to the parental line, though not modified by DAPT. Finally, because DAPT in vivo may also be acting on tumor microenvironment, we determined the direct effect of DAPT on GH3 cells in vitro. We found that DAPT decreases the proliferative, secretory and migration potential of GH3 cells. These results position selective interruption of Notch signaling as a potential therapeutic tool in adjuvant treatments for aggressive or resistant pituitary tumors.

Restricted access

Wei Guan, Junhui Hu, Lu Yang, Ping Tan, Zhuang Tang, Brian L West, Gideon Bollag, Hua Xu and Lily Wu

For men with castration-resistant prostate cancer (CRPC), androgen-deprivation therapy (ADT) often becomes ineffective requiring the addition of docetaxel, a proven effective chemotherapy option. Tumor-associated macrophages (TAMs) are known to provide protumorigenic influences that contribute to treatment failure. In this study, we examined the contribution of TAMs to docetaxel treatment. An increased infiltration of macrophages in CRPC tumors was observed after treatment with docetaxel. Prostate cancer cells treated with docetaxel released more macrophage colony-stimulating factor (M-CSF-1 or CSF-1), IL-10 and other factors, which can recruit and modulate circulating monocytes to promote their protumorigenic functions. Inhibition of CSF-1 receptor kinase signaling with a small molecule antagonist (PLX3397) in CRPC models significantly reduces the infiltration of TAMs and their influences. As such, the addition of PLX3397 to docetaxel treatment resulted in a more durable tumor growth suppression than docetaxel alone. This study reveals a rational strategy to abrogate the influences of TAMs and extend the treatment response to docetaxel in CRPC.

Restricted access

Xi Wei, Shang Cai, Rebecca J Boohaker, Joshua Fried, Ying Li, Linfei Hu, Yi Pan, Ruifen Cheng, Sheng Zhang, Ye Tian, Ming Gao and Bo Xu

Anaplastic thyroid cancer (ATC) is an aggressive cancer with poor clinical prognosis. However, mechanisms driving ATC aggressiveness is not well known. Components of the DNA damage response (DDR) are frequently found mutated or aberrantly expressed in ATC. The goal of this study is to establish the functional link between histone acetyltransferase lysine (K) acetyltransferase 5 (KAT5, a critical DDR protein) and ATC invasiveness using clinical, in vitro and in vivo models. We analyzed the expression of KAT5 by immunohistochemistry and assessed its relationship with metastasis and overall survival in 82 ATC patients. Using cellular models, we established functional connection of KAT5 expression and C-MYC stabilization. We then studied the impact of genetically modified KAT5 expression on ATC metastasis in nude mice. In clinical samples, there is a strong correlation of KAT5 expression with ATC metastasis (P = 0.0009) and overall survival (P = 0.0017). At the cellular level, upregulation of KAT5 significantly promotes thyroid cancer cell proliferation and invasion. We also find that KAT5 enhances the C-MYC protein level by inhibiting ubiquitin-mediated degradation. Further evidence reveals that KAT5 acetylates and stabilizes C-MYC. Finally, we prove that altered KAT5 expression influences ATC lung metastases in vivo. KAT5 promotes ATC invasion and metastases through stabilization of C-MYC, demonstrating it as a new biomarker and therapeutic target for ATC.

Restricted access

Xiao-hui Luo, Jian-zhou Liu, Bo Wang, Qun-li Men, Yu-quan Ju, Feng-yan Yin, Chao Zheng and Wei Li

Insights into the mechanisms by which key factors stimulate cell growth under androgen-depleted conditions is a premise to the development of effective treatments with clinically significant activity in patients with castration-resistant prostate cancer (CRPC). Herein, we report that, the expression of Krüppel-like factor 14 (KLF14), a master transcription factor in the regulation of lipid metabolism, was significantly induced in castration-insensitive PCa cells and tumor tissues from a mouse xenograft model of CRPC. KLF14 upregulation in PCa cells, which was stimulated upstream by oxidative stress, was dependent on multiple pathways including PI3K/AKT, p42/p44 MAPK, AMPK and PKC pathways. By means of ectopic overexpression and genetic inactivation, we further show that KLF14 promoted cell growth via positive regulation of the antioxidant response under androgen-depleted conditions. Mechanistically, KLF14 coupled to p300 and CBP to enhance the transcriptional activation of HMOX1, the gene encoding the antioxidative enzyme heme oxygenase-1 (HO-1) that is one of the most important mechanisms of cell adaptation to stress. Transient knockdown of HMOX1 is sufficient to overcome KLF14 overexpression-potentiated PCa cell growth under androgen-depleted conditions. From a pharmacological standpoint, in vivo administration of ZnPPIX (a specific inhibitor of HO-1) effectively attenuates castration-resistant progression in the mouse xenograft model, without changing KLF14 level. Together, these results provide comprehensive insight into the KLF14-dependent regulation of antioxidant response and subsequent pathogenesis of castration resistance and indicate that interventions targeting the KLF14/HO-1 adaptive mechanism should be further explored for CRPC treatment.

Restricted access

Taymeyah Al-Toubah, Stefano Partelli, Mauro Cives, Valentina Andreasi, Franco Silvestris, Massimo Falconi, Daniel Anaya Saenz and Jonathan Strosberg

New systemic treatments have improved the therapeutic landscape for patients with metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NETs). While drugs such as everolimus, sunitinib, temozolomide, and 177Lutetium-dotatate are appropriate for patients with widespread disease progression, local treatment approaches may be more appropriate for patients with unifocal progression. Surgical resection, radiofrequency ablation (RFA), hepatic arterial embolization (HAE), or radiation, can control discrete sites of progression, allowing patients to continue their existing therapy, and sparing them toxicities of a new systemic treatment. We identified 69 patients with metastatic GEP-NETs who underwent a local treatment for focal progression in the setting of widespread metastases. 26% underwent resection, 27% RFA, 23% external beam radiation, and 23% selective HAE. With a median follow-up of 25 months, 42 (61%) patients subsequently progressed to the point of requiring additional intervention (12 locoregional, 30 systemic) for disease control. Median time to new systemic treatment was 32 months (95% CI, 16.5 – 47.5 months). Median time to any additional intervention was 19 months (95% CI, 8.7 – 25.3 months). Control of local sites of progression enabled the majority of patients to remain on their existing systemic treatment and avoid potential toxicities associated with salvage systemic therapy.