Browse

You are looking at 41 - 50 of 2,067 items

Full access

Ninu Poulose, Ian G Mills and Rebecca E Steele

Metabolic dysregulation is regarded as an important driver in cancer development and progression. The impact of transcriptional changes on metabolism has been intensively studied in hormone-dependent cancers, and in particular, in prostate and breast cancer. These cancers have strong similarities in the function of important transcriptional drivers, such as the oestrogen and androgen receptors, at the level of dietary risk and epidemiology, genetics and therapeutically. In this review, we will focus on the function of these nuclear hormone receptors and their downstream impact on metabolism, with a particular focus on lipid metabolism. We go on to discuss how lipid metabolism remains dysregulated as the cancers progress. We conclude by discussing the opportunities that this presents for drug repurposing, imaging and the development and testing of new therapeutics and treatment combinations.

Full access

Bruno Nozima, Thais Biude Mendes, Gustavo Pereira, Rodrigo Pinheiro Araldi, Edna Iwamura, Soraya Soubhi Smaili, Gianna Carvalheira and Janete Maria Cerutti

We previously proposed that high expression of FAM129A can be used as a thyroid carcinoma biomarker in preoperative diagnostic exams of thyroid nodules. Here we identify that FAM129A expression is increased under nutrient and growth factor depletion in a normal thyroid cell line (PCCL3), overlapping with increased expression of autophay-related protein and inhibition of AKT/mTOR/p70S6K . Supplementation of insulin, TSH and serum to the medium was able to reduce the expression of both FAM129A and autophagy-related protein and reestablish the AKT/mTOR/p70S6K axis. To determine the direct role of FAM129A on autophagy, FAM129A was transfected into PCCL3 cells. Its overexpression induced autophagic vesicles formation, evidenced by transmission electron microscopy. Co-expression of FAM129A and mCherry-EGFP-LC3B in PCCL3 showed an increased yellow puncta formation, suggesting that FAM129A induces autophagy. To further confirm it’s role on autophagy, we knockdown FAM129A in two thyroid carcinoma cell lines (TPC1 and FTC-236). Unexpectedly, FAM129A silencing increased autophagic flux, suggesting that FAM129A inhibits autophagy in these models. We next co-transfect PCCL3 cells with FAM129A and RET/PTC1 and tested autophagy in this context. Co-expression of FAM129A and RET/PTC1 oncogene in PCCL3 cells, inhibited RET/PTC1-induced autophagy. Together, our data suggest that, in normal cells FAM129A induces autophagy in order to maintain cell homeostasis and provide substrates under starvation conditions. Instead, in cancer cells, decreased autophagy may help the cells to overcome cell death. FAM129A regulates autophagy in a cell and/or context-dependent manner. Our data reinforce the concept that autophagy can be used as a strategy for cancer treatment.

Full access

Simon Linder, Henk van der Poel, Andries M. Bergman, Wilbert Zwart and Stefan Prekovic

The androgen receptor drives the growth of metastatic castration-resistant prostate cancer. This has led to the development of multiple novel drugs targeting this hormone-regulated transcription factor, such as enzalutamide – a potent androgen receptor antagonist. Despite the plethora of possible treatment options, the absolute survival benefit of each treatment separately is limited to a few months. Therefore, current research efforts are directed to determine the optimal sequence of therapies, discover novel drugs effective in metastatic castration-resistant prostate cancer and define patient subpopulations that ultimately benefit from these treatments. Molecular studies provide evidence on which pathways mediate treatment resistance and may lead to improved treatment for metastatic castration-resistant prostate cancer. This review provides, firstly a concise overview of the clinical development, use and effectiveness of enzalutamide in the treatment of advanced prostate cancer, secondly it describes translational research addressing enzalutamide response versus resistance and lastly highlights novel potential treatment strategies in the enzalutamide-resistant setting.

Full access

Federica Grillo, Tullio Florio, Francesco Ferraù, Elda Kara, Giuseppe Fanciulli, Antongiulio Faggiano, Annamaria Colao and NIKE Group

In the last few years, the therapeutic approach for neuroendocrine neoplasms (NENs) has changed dramatically following the approval of several novel targeted treatments. The multitarget tyrosine kinase inhibitor (MTKI), sunitinib malate, has been approved by Regulatory Agencies in pancreatic NENs. The MTKI class, however, includes several other molecules (approved for other conditions), which are currently being studied in NENs. An in-depth review on the studies published on the MTKIs in neuroendocrine tumors such as axitinib, cabozantinib, famitinib, lenvatinib, nintedanib, pazopanib, sorafenib and sulfatinib was performed. Furthermore, we extensively searched on the Clinical Trial Registries databases worldwide, in order to collect information on the ongoing clinical trials related to this topic. Our systematic analysis on emerging MTKIs in the treatment of gastroenteropancreatic and lung NENs identifies in vitro and in vivo studies, which demonstrate anti-tumor activity of diverse MTKIs on neuroendocrine cells and tumors. Moreover, for the first time in the literature, we report an updated view concerning the upcoming clinical trials in this field: presently, phase I, II and III clinical trials are ongoing and will include, overall, a staggering 1667 patients. This fervid activity underlines the increasing interest of the scientific community in the use of emerging MTKIs in NEN treatment.

Full access

Mauro Cives, Jonathan Strosberg, Sameer Al Diffalha and Domenico Coppola

Immune checkpoint inhibitors have shown promising results in different cancers, and correlation between immune infiltration, expression of Programmed Death-Ligand 1 (PD-L1) by tumor cells and response to immunotherapy has been reported. There is limited knowledge regarding the immune microenvironment of small bowel (SB) neuroendocrine tumors (NETs). This work was aimed at characterizing the immune landscape of SB NETs. Expression of PD-L1 and Programmed Death-1 (PD-1) was evaluated by immunohistochemistry in 102 surgically resected, primary NETs of the duodenum, jejunum and ileum. Extent and characteristics of the tumor-associated immune infiltrate were also assessed and investigated in their prognostic potential. We detected expression of PD-L1 in ≥1% and ≥50% of tumor cells in 40/102 (39%; 95% CI, 30-49%) and 14/102 (14%; 95% CI, 8-22%) cases respectively. Intratumor host immune response was apparently absent in 35/102 cases (34%; 95% CI, 25-44%), mild-to-moderate in 46/102 samples (45%, 95% CI, 35-55%), intense in 21/102 tumors (21%, 95% CI, 13-30%). Expression of PD-L1 and extent of immune infiltration were significantly higher in duodenal NETs as compared with jejunal/ileal NETs. A marked peritumoral host response was organized as ectopic lymph node-like structures in 18/102 cases (18%; 95% CI, 11-26%). Neither PD-L1 expression nor the degree of immune infiltration showed any prognostic significance. Overall, the immune landscape of SB NETs is heterogeneous, with adaptive immune resistance mechanisms prevailing in duodenal NETs. Clinical trials of immune checkpoint inhibitors should take into account the immune heterogeneity of SB NETs.

Full access

M Principe, M Chanal, V Karam, A Wierinckx, I Mikaélian, R Gadet, C Auger, V Raverot, E Jouanneau, A Vasiljevic, A Hennino, G Raverot and P Bertolino

Prolactinoma represents the most frequent hormone-secreting pituitary tumours. These tumours appear in a benign form, but some of them can reach an invasive and aggressive stage through an unknown mechanism. Discovering markers to identify prolactinoma proliferative and invading character is therefore crucial to develop new diagnostic/prognostic strategies. Interestingly, members of the TGFβ-Activin/BMP signalling pathways have emerged as important actors of pituitary development and adult function, but their role in prolactinomas remains to be precisely determined. Here, using a heterotopic allograft model derived from a rat prolactinoma, we report that the Activins orphan type I receptor ALK7 is ectopically expressed in prolactinomas-cells. Through immunohistological approaches, we further confirm that normal prolactin-producing cells lack ALK7-expression. Using a series of human tumour samples, we show that ALK7 expression in prolactinomas cells is evolutionary conserved between rat and human. More interestingly, our results highlight that tumours showing a robust expression of ALK7 present an increased proliferation as address by Ki67 expression and retrospective analysis of clinical data from 38 patients, presenting ALK7 as an appealing marker of prolactinoma aggressiveness. Beside this observation, our work pinpoints that the expression of prolactin is highly heterogeneous in prolactinoma cells. We further confirm the contribution of ALK7 in these observations and the existence of highly immunoreactive prolactin cells lacking ALK7 expression. Taken together, our observations suggest that Activin signalling mediated through ALK7 could therefore contribute to the hormonal heterogeneity and increased proliferation of prolactinomas.

Full access

Christina Schug, Sarah Urnauer, Carsten Jäckel, Kathrin Alexandra Schmohl, Mariella Tutter, Katja Steiger, Nathalie Schwenk, Markus Schwaiger, Ernst Wagner, Peter Jon Nelson and Christine Spitzweg

Based on their excellent tumor-homing capacity, genetically engineered mesenchymal stem cells (MSCs) are under investigation as tumor-selective gene delivery vehicles. Transgenic expression of the sodium iodide symporter (NIS) in genetically engineered MSCs allows noninvasive tracking of MSC homing by imaging of functional NIS expression as well as therapeutic application of 131I. The use of tumor-stroma activated promoters can improve tumor-specific MSC-mediated transgene delivery. The essential role of transforming growth factor B1 (TGFB1) and the SMAD downstream target in the signaling between tumor and the surrounding stroma makes the biology of this pathway a potential option to better control NIS expression within the tumor milieu. Bone marrow-derived MSCs were stably transfected with a NIS-expressing plasmid driven by a synthetic SMAD-responsive promoter (SMAD-NIS-MSCs). Radioiodide uptake assays revealed a 4.9-fold increase in NIS-mediated perchlorate-sensitive iodide uptake in SMAD-NIS MSCs after TGFB1 stimulation compared to unstimulated cells demonstrating the successful establishment of MSCs which induce NIS expression in response to activation of TGFB1 signaling using a SMAD-responsive promoter. 123I-scintigraphy revealed significant tumor-specific radioiodide accumulation and thus NIS expression after systemic application of SMAD-NIS-MSCs into mice harboring subcutaneous tumors derived from the human hepatocellular carcinoma (HCC) cell line HuH7, which express TGFB1. 131I therapy in SMAD-NIS-MSCs-treated mice demonstrated a significant delay in tumor growth and prolonged survival. Making use of the tumoral TGFB1 signaling network in the context of MSC-mediated NIS gene delivery is a promising approach to foster tumor stroma-selectivity of NIS transgene expression and tailor NIS-based gene therapy to TGFB1-rich tumor environments.

Open access

Paraskevi Xekouki, Emily Jane Lodge, Jakob Matschke, Alice Santambrogio, John R Apps, Ariane Sharif, Thomas S Jacques, Simon Aylwin, Vincent Prevot, Ran Li, Jörg Flitsch, Stefan R Bornstein, Marily Theodoropoulou and Cynthia Andoniadou

Tumours of the anterior pituitary can manifest from all endocrine cell types but the mechanisms for determining their specification are not known. The Hippo kinase cascade is a crucial signalling pathway regulating growth and cell fate in numerous organs. There is mounting evidence implicating this in tumour formation, where it is emerging as an anti-cancer target. We previously demonstrated activity of the Hippo kinase cascade in the mouse pituitary and nuclear association of its effectors YAP/TAZ with SOX2-expressing pituitary stem cells. Here we sought to investigate whether these components are expressed in the human pituitary and if they are deregulated in human pituitary tumours. Analysis of pathway components by immunofluorescence reveals pathway activity during normal human pituitary development and in the adult gland. Poorly differentiated pituitary tumours (null cell adenomas, adamantinomatous craniopharyngiomas (ΑCPs) and papillary craniopharyngiomas (PCPs)), displayed enhanced expression of pathway effectors YAP/TAZ. In contrast, differentiated adenomas displayed lower or absent levels. Knock-down of the kinase-encoding Lats1 in GH3 rat mammosomatotropinoma cells suppressed Prl and Gh promoter activity following an increase in YAP/TAZ levels. In conclusion, we have demonstrated activity of the Hippo kinase cascade in the human pituitary and association of high YAP/TAZ with repression of the differentiated state both in vitro and in vivo. Characterisation of this pathway in pituitary tumours is of potential prognostic value, opening up putative avenues for treatments.

Full access

Eva Baxter, Karolina Windloch, Greg Kelly, Jason S Lee, Frank Gannon and Donal Brennan

Up to 80% of endometrial and breast cancers express oestrogen receptor alpha (ERα). Unlike breast cancer, anti-oestrogen therapy has had limited success in endometrial cancer, raising the possibility that oestrogen has different effects in both cancers. We investigated the role of oestrogen in endometrial and breast cancers using data from The Cancer Genome Atlas (TCGA) in conjunction with cell line studies. Using phosphorylation of ERα (ERα-pSer118) as a marker of transcriptional activation of ERα in TCGA datasets, we found that genes associated with ERα-pSer118 were predominantly unique between tumour types and have distinct regulators. We present data on the alternative and novel roles played by SMAD3, CREB-pSer133 and particularly XBP1 in oestrogen signalling in endometrial and breast cancer.

Full access

Lautaro Zubeldia-Brenner, Catalina De Winne, Sofia Perrone, Santiago Andres Rodriguez-Segui, Christophe Willems, Ana Maria Ornstein, Isabel Maria Lacau-Mengido, Hugo Vankelecom, Carolina Cristina and Damasia Becú-Villalobos

Preclinical and clinical studies support that Notch signaling may play an important oncogenic role in cancer, but there is scarce information for pituitary tumors. We therefore undertook a functional study to evaluate Notch participation in pituitary adenoma growth. Tumors generated in nude mice by subcutaneous GH3 somatolactotrope cell injection were treated in vivo with DAPT, a γ-secretase inhibitor, thus inactivating Notch signaling. This treatment led to pituitary tumor reduction, lower prolactin and GH tumor content, and a decrease in angiogenesis. Furthermore, in silico transcriptomic and epigenomic analyses uncovered several tumor suppressor genes related to Notch signaling in pituitary tissue, namely Btg2, Nr4a1, Men1, Zfp36, and Cnot1. Gene evaluation suggested that Btg2, Nr4a1 and Cnot1 may be possible players in GH3 xenograft growth. Btg2 mRNA expression was lower in GH3 tumors compared to the parental line, and DAPT increased its expression levels in the tumor in parallel with the inhibition of its volume. Cnot1 mRNA levels were also increased in the pituitary xenografts by DAPT treatment. And the Nr4a1 gene was lower in tumors compared to the parental line, though not modified by DAPT. Finally, because DAPT in vivo may be also acting on tumor microenvironment, we determined the direct effect of DAPT on GH3 cells in vitro. We found that DAPT decreases the proliferative, secretory and migration potential of GH3 cells. These results position selective interruption of Notch signaling as a potential therapeutic tool in adjuvant treatments for aggressive or resistant pituitary tumors.