Browse

You are looking at 1 - 10 of 2,057 items

Restricted access

Isadora Pontes Cavalcante, Anna Vaczlavik, Ludivine Drougat, Claudimara Ferini Pacicco Lotfi, Karine Perlemoine, Christopher Ribes, Marthe Rizk-Rabin, Eric Clauser, Maria Candida Barisson Villares Fragoso, Jérôme Bertherat and Bruno Ragazzon

ARMC5 (Armadillo repeat containing 5 gene) was identified as a new tumor suppressor gene responsible for hereditary adrenocortical tumors and meningiomas. ARMC5 is ubiquitously expressed and encodes a protein which contains a N-terminal Armadillo repeat domain and a C-terminal BTB (Bric-a-Brac, Tramtrack and Broad-complex) domain, both docking platforms for numerous proteins. At present, expression regulation and mechanisms of action of ARMC5 are almost unknown. In this study, we showed that ARMC5 interacts with CUL3 requiring its BTB domain. This interaction leads to ARMC5 ubiquitination and further degradation by the proteasome. ARMC5 alters cell cycle (G1/S phases and cyclin E accumulation) and this effect is blocked by CUL3. Moreover, missense mutants in the BTB domain of ARMC5, identified in patients with multiple adrenocortical tumors, are neither able to interact and be degraded by CUL3/proteasome nor alter cell cycle. These data show a new mechanism of regulation of the ARMC5 protein and open new perspectives in the understanding of its tumor suppressor activity.

Restricted access

Hiroki Ide, Taichi Mizushima, Guiyang Jiang, Takuro Goto, Yujiro Nagata, Yuki Teramoto, Satoshi Inoue, Yi Li, Eiji Kashiwagi, Alexander S Baras, George J Netto, Takashi Kawahara and Hiroshi Miyamoto

Androgen receptor (AR) and estrogen receptor-β (ERβ) have been implicated in urothelial tumor outgrowth as promoters, while underlying mechanisms remain poorly understood. Our transcription factor profiling previously performed identified FOXO1 as a potential downstream target of AR in bladder cancer cells. We here investigated the functional role of FOXO1 in the development and progression of urothelial cancer in relation to AR and ERβ signals. In non-neoplastic urothelial SVHUC cells or bladder cancer lines, AR/ERβ expression or dihydrotestosterone/estradiol treatment reduced the expression levels of FOXO1 gene and induced those of a phosphorylated inactive form of FOXO1 (p-FOXO1). In chemical carcinogen-induced models, FOXO1 knockdown via shRNA or inhibitor treatment resulted in considerable induction of the neoplastic transformation of urothelial cells or bladder cancer development in mice. Similarly, FOXO1 inhibition considerably induced the viability, migration, and invasion of bladder cancer cells. Importantly, in FOXO1 knockdown sublines, an anti-androgen hydroxyflutamide or an anti-estrogen tamoxifen did not significantly inhibit the neoplastic transformation of urothelial cells, while dihydrotestosterone or estradiol did not significantly promote the proliferation or migration of urothelial cancer cells. In addition, immunohistochemistry in surgical specimens showed that FOXO1 and p-FOXO1 expression was down-regulated and up-regulated, respectively, in bladder tumor tissues, which was further associated with worse patient outcomes. AR or ERβ activation is thus found to correlate with inactivation of FOXO1 which appears to be their key downstream effector. Moreover, FOXO1, as a tumor suppressor, is likely inactivated in bladder cancer, which contributes in turn to inducing urothelial carcinogenesis and cancer growth.

Open access

Emanuel Christ, Kwadwo Antwi, Melpomeni Fani and Damian Wild

Receptors for the incretin glucagon-like peptide-1 (GLP-1R) have been found overexpressed in selected types of human tumors and may, therefore, play an increasingly important role in endocrine gastrointestinal tumor management. In particular, virtually all benign insulinomas express GLP-1R in high density. Targeting GLP-1R with indium-111, technetium-99m or gallium-68-labeled exendin-4 offers a new approach that permits the successful localization of small benign insulinomas. It is likely that this new non-invasive technique has the potential to replace the invasive localization of insulinomas by selective arterial stimulation and venous sampling. In contrast to benign insulinomas, malignant insulin-secreting neuroendocrine tumors express GLP-1R in only one-third of the cases, while they more often express the somatostatin subtype 2 receptors. Importantly, one of the two receptors appears to be always overexpressed. In special cases of endogenous hyperinsulinemic hypoglycemia (EHH), that is, in the context of MEN-1 or adult nesidioblastosis GLP-1R imaging is useful whereas in postprandial hypoglycemia in the context of bariatric surgery, GLP-1R imaging is probably not helpful. This review focuses on the potential use of GLP-1R imaging in the differential diagnosis of EHH.

Restricted access

Xinyue Wang, Xiwen Bi, Zhangzan Huang, Jiajia Huang, Wen Xia, Wei Shi and Zhongyu Yuan

The significance of androgen receptor (AR) in metastatic breast cancer (MBC) remains unclear, and it is still largely unknown how AR expression level influences HER2-positive tumors. This study aimed to investigate the prognostic and predictive value of AR in HER2-enriched MBC. Primary and/or paired metastatic tumors of 304 patients with pathologically confirmed HER2-enriched MBC were collected and immunohistochemically assessed for AR expression. The associations of AR and other clinicopathological characteristics were compared using the Chi-square test. Progression-free survival (PFS) and overall survival (OS) were calculated using the Kaplan–Meier method and log-rank test. Cox regression analysis was used to determine independent prognostic factors. AR-positivity with a cut-off value of 10% was observed in 237 (78.0%) cases and was associated with longer PFS, 13.2 months, as compared to that of 8.2 months (P = 0.004) in patients with AR-negativity. Moreover, a significant increase in the 5-year OS rate (65.3% vs 36.2%, P < 0.001) was also observed for patients with AR-positive tumors. Cox regression analysis identified AR-positivity as an independent prognostic factor of both PFS (hazard ratio = 0.71, P = 0.039) and OS (HR = 0.53, P = 0.013). Additionally, for those who received first-line Trastuzumab therapies, prolonged PFS (15.8 months vs 8.2 months, P = 0.005) and 5-year OS rate (66.2% vs 26.2%, P = 0.009) were observed in AR-positive tumors compared to AR-negative ones. In conclusion, AR was identified as an independent prognostic factor for favorable PFS and OS and could also predict the efficacy of first-line Trastuzumab treatment in patients with HER2-enriched MBC.

Restricted access

Woo Kyung Lee, Won Gu Kim, Laura Fozzatti, Sunmi Park, Li Zhao, Mark C Willingham, David Lonard, Bert W O’Malley and Sheue-yann Cheng

Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy without effective therapeutic options to improve survival. Steroid receptor coactivator-3 (SRC-3) is a transcriptional coactivator whose amplification and/or overexpression has been identified in many cancers. In this study, we explored the expression of SRC-3 in ATCs and the effects of a new class of SRC-3 inhibitor-2 (SI-2) in human ATC cells (THJ-11T and THJ-16T cells) and mouse xenograft models to assess therapeutic potential of SI-2 for the treatment of ATC. SRC-3 protein abundance was significantly higher in human ATC tissue samples and ATC cells than in differentiated thyroid carcinomas or normal controls. SI-2 treatment effectively reduced the SRC-3 expression in both ATC cells and ATC xenograft tumors induced by these cells. Cancer cell survival in ATC cells and tumor growth in xenograft tumors were significantly reduced by SI-2 treatment through induction of cancer cell apoptosis and cell cycle arrest. SI-2 also reduced cancer stem-like cells as shown by an inhibition of tumorsphere formation, ALDH activity, and expression of stem cell markers in ATC. These findings indicate that SRC-3 is a potential therapeutic target for treatment of ATC patients and that SI-2 is a potent and promising candidate for a new therapeutic agent.

Open access

K E Lines, P Filippakopoulos, M Stevenson, S Müller, H E Lockstone, B Wright, S Knapp, D Buck, C Bountra and R V Thakker

Medical treatments for corticotrophinomas are limited, and we therefore investigated the effects of epigenetic modulators, a new class of anti-tumour drugs, on the murine adrenocorticotropic hormone (ACTH)-secreting corticotrophinoma cell line AtT20. We found that AtT20 cells express members of the bromo and extra-terminal (BET) protein family, which bind acetylated histones, and therefore, studied the anti-proliferative and pro-apoptotic effects of two BET inhibitors, referred to as (+)-JQ1 (JQ1) and PFI-1, using CellTiter Blue and Caspase Glo assays, respectively. JQ1 and PFI-1 significantly decreased proliferation by 95% (P < 0.0005) and 43% (P < 0.0005), respectively, but only JQ1 significantly increased apoptosis by >50-fold (P < 0.0005), when compared to untreated control cells. The anti-proliferative effects of JQ1 and PFI-1 remained for 96 h after removal of the respective compound. JQ1, but not PFI-1, affected the cell cycle, as assessed by propidium iodide staining and flow cytometry, and resulted in a higher number of AtT20 cells in the sub G1 phase. RNA-sequence analysis, which was confirmed by qRT-PCR and Western blot analyses, revealed that JQ1 treatment significantly altered expression of genes involved in apoptosis, such as NFκB, and the somatostatin receptor 2 (SSTR2) anti-proliferative signalling pathway, including SSTR2. JQ1 treatment also significantly reduced transcription and protein expression of the ACTH precursor pro-opiomelanocortin (POMC) and ACTH secretion by AtT20 cells. Thus, JQ1 treatment has anti-proliferative and pro-apoptotic effects on AtT20 cells and reduces ACTH secretion, thereby indicating that BET inhibition may provide a novel approach for treatment of corticotrophinomas.

Free access

Feng Wu, Fuxingzi Li, Xiao Lin, Feng Xu, Rong-Rong Cui, Jia-Yu Zhong, Ting Zhu, Su-Kang Shan, Xiao-Bo Liao, Ling-Qing Yuan and Zhao-Hui Mo

Open access

Jesús Morillo-Bernal, Lara P Fernández and Pilar Santisteban

FOXE1 is a thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differentiated state. Interestingly, a strong association has been recently described between FOXE1 expression and susceptibility to thyroid cancer, but little is known about the mechanisms underlying FOXE1-induced thyroid tumorigenesis. Here, we used a panel of human thyroid cancer-derived cell lines covering the spectrum of thyroid cancer phenotypes to examine FOXE1 expression and to test for correlations between FOXE1 expression, the allele frequency of two SNPs and a length polymorphism in or near the FOXE1 locus associated with cancer susceptibility, and the migration ability of thyroid cancer cell lines. Results showed that FOXE1 expression correlated with differentiation status according to histological sub-type, but not with SNP genotype or cell migration ability. However, loss-and-gain-of-function experiments revealed that FOXE1 modulates cell migration, suggesting a role in epithelial-to-mesenchymal transition (EMT). Our previous genome-wide expression analysis identified Zeb1, a major EMT inducer, as a putative Foxe1 target gene. Indeed, gene silencing of FOXE1 decreased ZEB1 expression, whereas its overexpression increased ZEB1 transcriptional activity. FOXE1 was found to directly interact with the ZEB1 promoter. Lastly, ZEB1 silencing decreased the ability of thyroid tumoral cells to migrate and invade, pointing to its importance in thyroid tumor mestastases. In conclusion, we have identified ZEB1 as a bona fide target of FOXE1 in thyroid cancer cells, which provides new insights into the role of FOXE1 in regulating cell migration and invasion in thyroid cancer.

Restricted access

Bo Chen, Guochun Zhang, Guangnan Wei, Yulei Wang, Liping Guo, Jiali Lin, Kai Li, Hsiaopei Mok, Li Cao, Chongyang Ren, Lingzhu Wen, Minghan Jia, Cheukfai Li, Ting Hou, Han Han-Zhang, Jing Liu, Charles M Balch and Ning Liao

HER2-positive breast cancer is a biologically and clinically heterogeneous disease. Based on the expression of hormone receptors (HR), breast tumors can be further categorized into HR positive and HR negative. Here, we elucidated the comprehensive somatic mutation profile of HR+ and HR− HER2-positive breast tumors to understand their molecular heterogeneity. In this study, 64 HR+/HER2+ and 43 HR-/HER2+ stage I-III breast cancer patients were included. Capture-based targeted sequencing was performed using a panel consisting of 520 cancer-related genes, spanning 1.64 megabases of the human genome. A total of 1119 mutations were detected among the 107 HER2-positive patients. TP53, CDK12 and PIK3CA were the most frequently mutated, with mutation rates of 76, 61 and 49, respectively. HR+/HER2+ tumors had more gene amplification, splice site and frameshift mutations and a smaller number of missense, nonsense and insertion-deletion mutations than HR-/HER2+ tumors. In KEGG analysis, HR+/HER2+ tumors had more mutations in genes involved in homologous recombination (P = 0.004), TGF-beta (P = 0.007) and WNT (P = 0.002) signaling pathways than HR-/HER2+ tumors. Moreover, comparative analysis of our cohort with datasets from The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium revealed the distinct somatic mutation profile of Chinese HER2-positive breast cancer patients. Our study revealed the heterogeneity of somatic mutations between HR+/HER2+ and HR-/HER2+ in Chinese breast cancer patients. The distinct mutation profile and related pathways are potentially relevant in the development of optimal treatment strategies for this subset of patients.

Restricted access

Tanupriya Contractor, Richard Clausen, Grant R Harris, Jeffrey A Rosenfeld, Darren R Carpizo, Laura Tang and Chris R Harris

By the strictest of definitions, a genetic driver of tumorigenesis should fulfill two criteria: it should be altered in a high percentage of patient tumors, and it should also be able to cause the same type of tumor to form in mice. No gene that fits either of these criteria has ever been found for ileal neuroendocrine tumors (I-NETs), which in humans are known for an unusual lack of recurrently mutated genes, and which have never been detected in mice. In the following report, we show that I-NETs can be generated by transgenic RT2 mice, which is a classic model for a genetically unrelated disease, pancreatic neuroendocrine tumors (PNETs). The ability of RT2 mice to generate I-NETs depended upon genetic background. I-NETs appeared in a B6AF1 genetic background, but not in a B6 background nor even in an AB6F1 background. AB6F1 and B6AF1 have identical nuclear DNA but can potentially express different allelic forms of imprinted genes. This led us to test human I-NETs for loss of imprinting, and we discovered that the IGF2 gene showed loss of imprinting and increased expression in the I-NETs of 57% of patients. By increasing IGF2 activity genetically, I-NETs could be produced by RT2 mice in a B6 genetic background, which otherwise never developed I-NETs. The facts that IGF2 is altered in a high percentage of patients with I-NETs and that I-NETs can form in mice that have elevated IGF2 activity, define IGF2 as the first genetic driver of ileal neuroendocrine tumorigenesis.