Highlights of the biology of endocrine tumours of the gut and pancreas

G Rindi and C Bordi

Department of Pathology and Laboratory Medicine, Section of Anatomic Pathology, University of Parma, Via Gramsci 14, I-43100 Parma, Italy

(Requests for offprints should be addressed to G.Rindi; Email: guido.rindi@unipr.it)

Abstract

Originating from cells of the diffuse endocrine system the endocrine tumours of the gut and the pancreatic tract are rare entities characterized by a common phenotypic aspect and producing several bioactive substances including growth factors. Two major categories are identified: well-differentiated and poorly differentiated tumours. The clinical behaviour varies ranging from benign to low grade malignant for well-differentiated tumours/carcinomas to high grade malignant for poorly differentiated carcinomas. The two major categories of well-differentiated and poorly differentiated tumours display distinct phenotypes and genetic backgrounds possibly supporting distinct histogenesis. Genetic abnormalities associated with either induction or progression of tumours may vary depending on the site of origin.

Histogenesis

It is believed that the endocrine tumours of gut and pancreas originate from the endocrine cells of the diffuse endocrine system (DES). Fifteen cell types producing hormonal peptides or biogenic amines are present in the pancreas and the mucosa of the gastrointestinal (GI) tract (Solcia et al. 1998, Rindi et al. 1999b). Together with the endocrine cells scattered in other endodermal derivatives such as the thyroid, lung, the biliary tree and urethra, the endocrine cells of the gastroenteropancreatic (GEP) tract belong to the so-called DES. As demonstrated in transgenic mice experiments, transformation of DES cells of gut and pancreas may result in the development of endocrine tumours (Hanahan 1985, Efrat et al. 1988). Since DES cells share a number of antigens with nerve elements ('neuroendocrine markers'), the adjective ‘neuroendocrine’ has been widely used to describe such cell types and derived tumours. However, the current World Health Organisation (WHO) endocrine tumour classification (Solcia et al. 2000) adopted the term ‘endocrine’ and this definition will be used in this paper.

Diagnosis

Cells variably retaining a proportion of the antigens expressed by the normal DES counterparts comprise the endocrine tumours of gut and pancreas. The positive assessment of endocrine differentiation of tumours requires the identification of general markers of neuroendocrine differentiation by immunohistochemistry (Bishop et al. 1988). Widely used are cytosol markers such as neuron-specific enolase (NSE) (Bishop et al. 1982) and protein gene product 9.5 (PGP 9.5) (Rode et al. 1985), the membrane-bound neural cell adhesion molecules (NCAM) (Al-Khafaji et al. 1998, Lantuejoul et al. 1998), or granule markers such as chromogranin A and the ATP-dependent vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) (associated with large, dense-core vesicles) (Lloyd & Wilson 1983, Rindi et al. 1986, Erickson et al. 1996, Kolby et al. 1998, Eissele et al. 1999, Rindi et al. 2000) and synaptophysin (associated with small synaptic-like vesicles) (Jahn et al. 1985, Wiedenmann & Franke 1985, Buffa et al. 1988). The identification of specific tumour cell types requires hormone immunohistochemistry, searching first for hormones expressed by the DES cells of the anatomical district where the tumour is found and then for ‘ectopic’ hormones according to specific hyperfunctional syndromes (e.g. gastrin expression in pancreatic endocrine tumours).

Differentiation, histology and behaviour

The recently released WHO classification of the endocrine tumours of the gastroenteropancreatic tract identifies five categories including 'pure' endocrine tumours, mixed exocrine-endocrine tumours and tumour-like lesions (Solcia et al. 2000). This classification is based on innovative concepts
and provides a useful framework for the evaluation of the clinical and functional properties of these neoplasms. The concepts governing this classification are: (a) the tumours are subdivided according to the site (stomach, pancreas, duodenum-upper jejunum, ileum-right colon, appendix, and rectum) and cell type of origin; (b) both pathological (such as tumour size, number of mitoses, histologically proven angioinvasion and metastases) and clinical data (such as the occurrence of an associated clinical syndrome) are considered under site-specific ‘clinicopathological correlation’; (c) a uniform scheme of classification is used for all sites based on three main categories, the first of which is further subdivided into two subgroups: (i) well-differentiated endocrine tumours, either with benign behaviour (i.i) or with uncertain behaviour – benign or low-grade malignant – (i.ii) at the time of diagnosis; (ii) well-differentiated endocrine carcinomas with low-grade malignant behaviour; (iii) poorly differentiated endocrine carcinomas, with high-grade malignant behaviour.

In general, well-differentiated tumours express diffusely and intensely all the above-mentioned markers of neuroendocrine differentiation, and in particular chromogranin A which appears as the most reliable marker available. Poorly differentiated tumours, on the other hand, display chromogranin A in few, if any, tumour cells, while they retain the expression of synaptophysin, NSE and PGP 9.5 and of the membrane antigen NCAM CD56.

On histological examination, well and poorly differentiated tumours display important differences. In general a bland histology characterizes well-differentiated tumours with trabecular, glandular or solid nest structure (often bland histology characterizes well-differentiated tumours, either with benign behaviour (i.i) or with uncertain behaviour – benign or low-grade malignant – (i.ii) at the time of diagnosis; (ii) well-differentiated endocrine carcinomas with low-grade malignant behaviour; (iii) poorly differentiated endocrine carcinomas, with high-grade malignant behaviour.

Significant differences exist between well and poorly differentiated endocrine tumours regarding their clinical behaviour. Well-differentiated tumours, the largest fraction of endocrine tumours of the digestive tract, may display some low-grade malignant potential. However, only in the presence of proven malignant behaviour, i.e. in synchronous metastasis and/or invasiveness, is the term endocrine carcinoma accepted (Solcia et al. 2000). Even so, the life expectancy for patients with metastatic well-differentiated endocrine carcinomas may span many years. In contrast, poorly differentiated endocrine carcinomas (PDEC) are invariably malignant and aggressive, rapidly causing death.

The tumour cell population of well-differentiated tumours may vary significantly. Notably, not all known endocrine cell types have a tumour counterpart so that no tumour is known for secretin, cholecystokinin (CCK), motilin, gastric inhibitory peptide (GIP) and neurotensin cells. In addition, tumour cells producing different hormones may be present in the same endocrine tumour. This information indicates the high degree of tumour cell differentiation, but has no clinical significance unless associated with an overt clinical syndrome due to hormonal hypersecretion. If this is the case endocrine tumours are currently defined as ‘functioning’ and it is only in this case that definitions like ‘insulinoma’ or ‘gastrinoma’ are acceptable. Most often endocrine tumours are not associated with any specific hyperfunctional symptom and are thus defined as ‘non-functioning’ (Solcia et al. 1998). In general, the cell types composing well-differentiated endocrine tumours reflect their normal counterpart in the organ of origin, e.g. enterochromaffin-like (ECL) cell tumours are only observed in the stomach, insulinomas in the pancreas, etc. In contrast, poorly differentiated endocrine tumours may be present at any site in the gut and pancreas (with the notable exception of the appendix), supporting an origin from an endocrine-committed less-differentiated cell type.

Finally, there is no histological tumour grading for well-differentiated endocrine tumours of the digestive tract, although it has been tentatively developed for pancreatic and gastric tumours (La Rosa et al. 1996, Rindi et al. 1999a). Further, a number of clinicopathological criteria proved to be useful predictors of malignant behaviour (La Rosa et al. 1996, Rindi et al. 1999a) and included: tumour size (larger tumours tend to be more aggressive); invasion of nearby tissue (pancreas or appendix) or deep wall invasion; angio-invasion and invasion of perineural spaces; presence of spotty necrosis; overt cell atypia; more than two mitoses in 10 microscopic high power fields (HPF); Ki-67 index of more than 100/10 HPF or more than 2%; loss of chromogranin A immunoreactivity or hormone expression; nuclear p53 protein accumulation; and aneuploid status of tumour cells. These variables should all be considered in assigning a tentative risk class for each specific case. However, the predictive value of such variables remains to be proven for tumours other than those of pancreas and stomach.

**Tumour production and functional activity of growth factors**

In addition to hormones and biogenic amines, GEP endocrine tumours were frequently found to produce growth factors (GF) that may influence cell proliferation and differentiation either in the tumour cells themselves by an autocrine loop or in the host tissues (Puetzal et al. 1993). Although investigation regarding such production is still often preliminary, the data so far generated provide clues for the interpretation of the prominent field responses associated with ileal and gastric carcinoids and causing ileal infarction or severe gastric bleeding, respectively (discussed below).
Growth factors expressed by GEP endocrine tumours

Acidic and basic fibroblast growth factors (aFGF, bFGF)

These are members of a family of heparin binding peptides known to promote angiogenesis and to induce proliferation in other tissues of mesodermal origin (Goldfarb 1990). Moreover, a bFGF-like substance is known to be abnormally elevated in the serum of multiple endocrine neoplasia type 1 (MEN-1) patients (Zimering et al. 1993), possibly contributing to the circulating parathyroid mitogenic activity in MEN-1 syndrome (Brandi et al. 1986). Consistent expression of aFGF was found in serotonin-producing enterochromaffin (EC) cell tumours of the ileum, appendix, right colon and rectum (La Rosa et al. 1997). Such expression was found to correlate with the amount of tumour fibrous stroma, supporting a role for this protein in the tumour-associated fibroblastic response. Expression of bFGF was documented in proliferating ECL cells of hypergastrinaemic patients including both hyperplastic lesions and tumours (Bordi et al. 1994) (Fig. 1). The ECL cells, therefore, may represent a potent source of the parathyroid mitogenic factor in patients with MEN-1 syndrome. Indeed, we have found the highest degree of bFGF expression in hyperplastic ECL cells of a MEN-1 patient showing a multiple metastatizing ECL cell tumour (Bordi et al. 1997).

Expression of bFGF was also shown in some duodenal gastrinomas (Bordi et al. 1998) whereas conflicting results were obtained in midgut EC cell tumours, possibly depending on tumour tissue processing. Indeed, no immunoreactivity was observed in formalin-fixed, paraffin-embedded tumours (La Rosa et al. 1997) in contrast with the consistent immunostaining of a large series of frozen, cryosectioned and acetone-fixed tumours (Chaudhry et al. 1993). Expression of the four transcripts of bFGF was documented in cell cultures of an EC cell tumour (Beauchamp et al. 1991).

Insulin-like growth factors

The insulin-like growth factor-I (IGF-I) was demonstrated in primary cultures and in tumour extracts of midgut, EC cell tumours (Nilsson et al. 1993). IGF-I secretion by cultured tumour cells was inhibited by the somatostatin analogue, octreotide (Ahlman et al. 1993). Furthermore, IGF-I receptors were detected in tumour cells, suggesting an autocrine trophic function for IGF-I in EC cell tumours (Ahlman et al. 1993, Nilsson et al. 1993).

Platelet-derived growth factor

Platelet-derived growth factor (PDGF), composed of disulphide-bonded A- and B-polypeptide chains, has mitogenic properties for mesenchymal cells (including fibroblasts and smooth muscle cells) and neurons (Chaudhry et al. 1992, Ahlman et al. 1993). PDGF-B and PDGF-α receptors were found to be expressed by either tumour cells or stroma of most midgut, EC cell tumours (Chaudhry et al. 1992). The occurrence of PDGF-α receptors, which bind to either A or B chains, in tumour and stromal cells supports both autocrine tumour cell stimulation and induction of stromal proliferation in this type of tumour.

Transforming growth factor-α (TGF-α)

This 50-amino-acid polypeptide stimulates cell growth after binding to epidermal growth factor receptors (EGFR). TGF-α and EGFR were shown to be ubiquitously and extensively expressed by gut endocrine tumours, similar to other extraintestinal endocrine tumours (Beauchamp et al. 1991, Nilsson et al. 1995). The effectiveness of the EGFR of tumour cells to respond to the TGF-α autocrine stimulus was mediated via the four transcripts of bFGF which were documented in cell cultures of an EC cell tumour (Beauchamp et al. 1991).

Figure 1 bFGF expression in gastric ECL cells and derived growths. Chain-forming hyperplastic ECL cells positive for chromogranin A (A) express bFGF in consecutive serial sections (B); the arrowheads indicate cells positive for both antigens. (C) bFGF is heavily expressed in hyperplastic linear and micronodular ECL cell changes (upper left) and ECL cell tumour (lower right) in the gastric mucosa of a patient with Zollinger-Ellison and MEN-1 syndrome. The immunoperoxidase, ABC method was used.
documented in vitro (Nilsson et al. 1995). TGF-α expression was not specific for a given tumour type, being observed in ECL cell tumours of the stomach, somatostatin cell tumours of the duodenum, EC cell tumours of the ileum and appendix and L cell tumours of the rectum (Krishnamurthy & Dayal 1997). It was found to be unrelated to the tumour size or to the occurrence of metastases but was more frequent in tumours infiltrating the muscularis propria than in those limited to the mucosa/submucosa, suggesting a role for local invasion (Krishnamurthy & Dayal 1997). In pancreatic endocrine tumours different patterns ranging from full expression of TGF-α and of the complete EGFR molecule to the expression of only one of the two antigens or to the absence of both were found (Srivastava et al. 2001). These patterns showed no correlation with size, functional status or biological behaviour of the tumours, indicating no role for TGF-α in tumour progression.

**Transforming growth factor-β (TGF-β)**

Expression of TGF-β has been consistently demonstrated in midgut EC cell tumours (Beauchamp et al. 1991, Ahlman et al. 1993, Chaudhry et al. 1994) whereas expression of TGF-β receptor and of the latent TGF-β binding protein (LTBP) was demonstrated in the tumour stroma (Chaudhry et al. 1994).

**Neurotrophic factor(s)**

Production of factors having neurotrophic properties was elegantly demonstrated by transplants of cells of gastrointestinal endocrine tumours in the anterior eye chamber of immunosuppressed rats that elicited growth of sympathetic nerves from the host iris (Nilsson et al. 1984, Theodorsson et al. 1989). Moreover, co-cultures of midgut, EC cell tumour cells and rat foetal cholinergic neurons allowed survival of neurons with pronounced extension of neurites whereas no neuron survival was obtained in cultures of neurons alone (Wigander et al. 1991). The relevant, transferable neurotrophic factor, however, has not been identified yet. Northern blot analysis and specific bioassays proved negative for nerve growth factor (Ahlman et al. 1993).

**Potential in vivo effects of growth factors**

Several features associated with GEP endocrine tumours are consistent with a functional response of different host tissues to tumour production and release of growth factors.

Among the various tissues involved, proliferation of smooth muscle cells has been documented in association with ECL cell tumours of the stomach (Bordi et al. 1995). The change includes hypertrophy of the muscularis mucosae, especially where infiltrated by the tumours, proliferation of intratumoral stromal smooth muscle cells originating from the muscularis mucosae, mostly associated with tumour invasion of the submucosa, and the occurrence of frequent, prominent aggregates of smooth muscle cells in the lamina propria of the antral mucosa. bFGF, a potent mitogen for smooth muscle cells, locally released by ECL cell tumours and their precursor lesions (Bordi et al. 1994), may be responsible for these smooth muscle cell abnormalities.

In ileal EC cell tumours, as originally described by McNeal (1971), the muscle layers of the ileal wall, in particular the inner one, show hypertrophy sharply limited to the area of tumour penetration. Among the growth factors found to be expressed by this type of tumour, aFGF, bFGF and PDGF-B cause proliferation of smooth muscle cells (Chaudhry et al. 1992, Ahlman et al. 1993).

Combined smooth muscle and neural cell proliferation, originally described as neuromuscular hyperplasia by Masson (1928), is frequently found in association with EC cell tumours of the appendix, suggesting a potential paracrine influence of extraepithelial normal and tumour endocrine cells (Olsen & Holck 1987). TGF-α, the only growth factor so far identified in endocrine tumours of the appendix (Krishnamurthy & Dayal 1997), has neurotrophic effects and its receptors have been demonstrated in neurons (Ahlman et al. 1993). Striking hypertrophy of nerves running along areas of tumour infiltration has been described in ileal EC cell tumours (Bordi et al. 1998). Among the potential candidate growth factors are IGF-I, TGF-α, aFGF and PDGF, all with neurotrophic effects. Neurons are known to possess receptors for the three former peptides (Ahlman et al. 1993), whereas PDGF-α receptors were found in enteric nerve bundles including those close to tumour tissue (Chaudhry et al. 1992).

Ileal EC cell tumours are also characterized by the important fibroblastic response elicited by the tumour infiltration of the mesentery and peritoneum. This response may frequently result in buckling of the mesenteric border of the bowel wall, leading to bowel twisting and, eventually, to intestinal obstruction (Moertel et al. 1961). Furthermore, the EC cell tumours are associated with the well-known proliferation of subendocardial fibrous tissue in the right heart, leading to the cardiomopathy that is an integral part of the carcinoid syndrome (Lester & Gotlieb 1991). The demonstration of TGF-β receptor and of LTBP in the stroma of such tumours (Chaudhry et al. 1994) makes TGF-β a potential candidate molecule for the local and distant response of fibroblasts to midgut EC cell tumours. Interestingly, TGF-βs (β1 and β3 in particular) were found to be expressed by fibroblasts in the subendocardial fibrotic plaques of carcinoid heart disease, suggesting a role in the progressive deposition of matrix proteins typical of this serious complication of the carcinoid syndrome (Waltenberger et al. 1993).

A specific feature of ileal and jejunal well-differentiated endocrine tumours is the diffuse proliferation of both intimal and adventitial elastic tissue in large arterial and venous vessels of the mesenteric pedicle, often called vascular elastosis (Anthony & Drury 1970, Qizilbash 1977) and sometimes associated with proliferation of extravascular elastic fibres...
within the bowel wall (Qizilbash 1977). Not infrequently, vascular elastosis may cause ischaemic changes or even intestinal infarction. Little is known about the role of growth factors on elastic tissue, so no suggestion can be made as to the tumour factors responsible for the associated elastosis. In addition, vascular malformations and/or proliferations have also been observed in ECL cell gastric tumours (Roncoroni et al. 1997). These lesions may cause severe, life-threatening gastric bleeding, bFGF produced by ECL cell tumours (Bordi et al. 1994) is the most obvious candidate for this vascular response.

Finally, it is noteworthy that local responses of host tissues similar to those observed in gastrointestinal endocrine tumours have not, so far, been reported in pancreatic endocrine tumours.

**Genetic background**

Molecular data on the endocrine tumours are rapidly accumulating although the search for the genetic basis of tumour development is still elusive. In addition, the correct interpretation of the data is still suffering from the frequent lack of basic information such as the precise anatomical location, tumour cell type and clinical behaviour of the investigated tumours. In general, pancreatic endocrine tumours have been more extensively investigated than their gastrointestinal counterparts.

A great impulse for the study of the genetic background of endocrine tumours was given by the identification of the MEN-1 syndrome. Located on chromosome 11q13 and found to act as a tumour suppressor gene (Larsson et al. 1988), the MEN-1 gene was recently identified and sequenced (Chandrasekharappa et al. 1997). The nuclear localisation of the gene product named ‘menin’ suggests that it may act either in the regulation of transcription and DNA replication or in the cell cycle, likely interacting with the AP-1 transcriptional factor JunD (Agarwal et al. 1999) and with nuclear factor (NF)-kappaB proteins (Heppner et al. 2001). In patients with MEN-1, an inherited germ line mutation of the MEN-1 gene is associated with loss of function of the somatic allele by either chromosomal deletion (loss of heterozygosity, LOH) or point mutation, resulting in endocrine tumour development. Considerable amounts of data indicate that the MEN-1 gene is inactivated in at least a fraction of sporadic endocrine tumours of the foregut, making the MEN-1 gene the most important gene involved in the induction of these tumours. More than 300 different mutations of the MEN1 gene have been identified, none of them being associated with a specific tumour phenotype (Brandt et al. 2002). In addition up to 30% of MEN-1 patients still lack the MEN-1 gene mutation in the published series (Brandt et al. 2002). Below, we will focus on different genes involved in the induction and progression of endocrine tumours for the gastroenteropancreatic tract.

**Tumour induction**

**Pancreas**

Solid data have been generated on the allelic losses (LOH) at chromosome 11q13 region including the locus of the MEN1 gene in either familial or sporadic pancreatic endocrine tumours (PET). On the basis of a literature survey of 172 cases (Rindi et al. 2001), 11q13 LOH is found in 46% of sporadic PET. This finding is confirmed by a genome-wide investigation on non-functioning PET either by comparative genomic hybridization (CGH) (Speel et al. 1999) or high resolution allelotyping (Rigaud et al. 2001). When the LOH analysis was extended to the more telomeric markers in 11q, it was found that the allelic loss consistently and continuously spanned to 11qter (D’Adda et al. 2002). This observation indicates a mechanism of gene inactivation via chromosomal breakage and complete loss of 11q and supports the hypothesis of a potential additional oncosuppressor gene in 11q distal to the MEN-1 gene, that may cooperate with the latter or replace it in the pathogenesis of PET (Eubanks et al. 1994, Chakrabarti et al. 1998, D’Adda et al. 1999b). The abnormality rate decreases when searching for MEN1 gene mutation. Of 35 gastrinomas investigated, 15 (43%) were mutated, in sharp contrast with only 6 mutated insulinomas out of 62 insulinomas investigated (10%) (Rindi et al. 2001). The mutation rate of non-functioning (NF) tumours was 15% in 26 cases investigated overall (Rindi et al. 2001), while a recent study of 30 NF tumours showed 26% of cases harbouring MEN-1 mutations (Moore et al. 2001a). These data support the relevant role played by the MEN1 gene in the pathogenesis of about one third of pancreatic endocrine tumours. However, this observation implies that gene(s) other than MEN1 may be involved.

A recent CGH study on small, ‘initial’, tumours (< 2 cm in diameter) (Speel et al. 2001) showed considerable variations in the functioning versus non functioning pancreatic endocrine tumours with 9q gain in 46.4% of functioning tumours and, in particular, in 50% of insulinomas, with the common region of involvement (CRI) at 9q34. These alterations in non-functioning tumours were, however, detected in a background of diffuse genetic instability with at least 10 genetic chromosome arm aberrations per tumour, making the significance of the individual change difficult to evaluate. Overexpression of cyclin D1 was found by both immunohistochemistry and Northern analysis in 43% of PET showing no correlation with any specific tumour phenotype (Chung et al. 2000). Its occurrence in both benign and advanced lesions suggested an early event in tumour pathogenesis. Finally, an unusually high rate of LOH in chromosome 22q (93%) was observed in both benign and malignant insulinomas, suggesting a type-specific tumour suppressor gene in this region (Wild et al. 2001).

**Gut**

In general, the endocrine tumours of the gastrointestinal tract have been poorly studied with frequent lack of identification...
of the tumour cell-type or of analysis of gene mutation. Significant differences, however, are emerging between tumours of the region deriving from the primitive foregut (stomach, duodenum and upper jejunum) and those deriving from the midgut and hindgut (ileum, appendix and large intestine). Such differences reflect the different involvement of the respective tumours in the MEN-1 syndrome that is restricted to gastric ECL cell tumours of the stomach and duodenal gastrinomas. In these types of tumours 11q13 LOH has been documented both in familial and sporadic cases (Debelenko et al. 1997ab, D’Adda et al. 1999b). For gastric ECL cell tumours, a literature survey disclosed 75% of losses at the MEN-1 locus in 23 familial cases versus 41% in 46 sporadic cases (Rindi et al. 2001). In addition, MEN1 gene allelic loss was observed in four out of five poorly differentiated endocrine carcinomas of the stomach (Bordi et al. 1997, D’Adda et al. 1999b, Fuji et al. 1999). For duodenal gastrinomas and local nodes a similar frequency of 11q13 LOH was observed in both familial and sporadic forms (28% and 25% respectively) while MEN-1 gene mutation occurred in 22 out of 67 sporadic cases (33%) (Rindi et al. 2001). In contrast, tumours from more distal regions of the intestinal tract only rarely display MEN-1 gene alterations. A recent study from our laboratory (D’Adda et al. 2002), including 16 ileal, 6 appendicular and 3 rectal well differentiated endocrine tumours, showed an overall LOH rate of 9% of informative 11q13 microsatellites investigated. MEN-1 gene mutation was found in only one of twelve midgut endocrine tumours investigated (Toliat et al. 1997, Görtz et al. 1999).

Accumulating evidence indicates an important role for chromosome 18 in the induction of midgut well-differentiated endocrine tumours. Indeed, the imbalance of this chromosome, with frequent loss of 18q, is the most frequent abnormality detected by both CGH and LOH in well-differentiated midgut endocrine tumours and appears to be typical of these neoplasms (Zhao et al. 2000, Kyotlo et al. 2001, Löffgen et al. 2001, Tonnies et al. 2001). In a combined CGH/LOH study of 18 classical midgut EC cell tumours, losses at 18q22-qter were seen in 67% of cases (Kyotlo et al. 2001) whereas a genome-wide LOH screening of 8 tumours showed 18q21 losses to be very frequent (88% of cases) as well as specific alterations of these neoplasms (Löffgen et al. 2001). These alterations were telomeric to the loci of the genes SMAD2, SMAD4 and DCC which are largely involved in colorectal cancer.

**Tumour progression**

**Pancreas**

Several studies aimed at assessing the relationship between genetic defects and tumour progression or malignancy have been undertaken. Most of these studies, however, refer to a small series of cases and their results await confirmation by investigations on a larger series. Deletion of either arm of chromosome 1 was found in 10 out of 17 metastatic pancreatic endocrine tumours with no tumour type prevalence (Ebrahimi et al. 1999). This finding, however, was not confirmed in CGH and genome-wide allelotype studies (Speel et al. 1999, Rigaud et al. 2001). Allelic loss at 3p25 centromeric to the locus of the von Hippel-Lindau syndrome gene has been identified by Chung et al. (1997) and found to be associated with malignancy. The association of 3p loss and metastatic disease was further supported by a CGH study of 44 tumours of different types (Speel et al. 1999) and by a recent large study of 99 pancreatic endocrine tumours (Barghorn et al. 2001a) with 3p LOH in 76.7% of metastasizing versus 41.5% of non-metastasizing tumours. The frequent occurrence of 6q allelic loss for 6p has been documented in pancreatic tumours although its association with malignancy and tumour progression was observed by one group (Speel et al. 1999, Barghorn et al. 2001b) but not confirmed by another (Rigaud et al. 2001). Barghorn et al. (2001b) narrowed down two common regions of allelic deletion at 6q22.1 and 6q23-24 respectively, showing that isolated 6q LOH could also be found in benign tumours suggesting that the potential for malignant progression may occur at an early stage.

p53 mutations are rarely found in well-differentiated endocrine tumours (Lohmann et al. 1993b, Pellegata et al. 1994, Moore et al. 2001b). However, LOH at 17p13 was reported in 25% of cases and was associated with malignancy in one study (Beghelli et al. 1998). The lack of concomitant detectable p53 mutations and a detailed 17p allelotyping led these authors to suggest that an additional, malignancy-involved tumour suppressor gene may occur in 17p telomeric to p53. p53 nuclear hyperexpression/accumulation was frequently observed in poorly differentiated cases (La Rosa et al. 1996).

Allelic loss for markers on chromosome X was demonstrated in 60% of the informative loci investigated in malignant PET versus a rate of 4.5% in benign PET (P < 0.0001) (Pizzi et al. 2002). Interestingly, in one case more severe changes were shown in the liver metastasis than in the primary tumour, a finding further supporting the role for the inactivation of tumour suppressor gene(s) on the X-chromosome in the acquisition of a more aggressive phenotype by PET. Scarpa and his group extended the analysis to chromosome Y in male patients and found a significant association of sex chromosome losses with malignant features such as metastases, local invasion and high Ki-67 proliferation rate as well as shorter survival (Missiaglia et al. 2002).

Finally, the accumulation of genetic defects in different oncosuppressor genes reasonably plays a significant role in tumour progression and malignancy. The frequency of LOH for markers of seven oncosuppressor genes was significantly higher in malignant (40%) than in benign (17%) endocrine tumours (Beghelli et al. 1998). A paired CGH study of primary tumours and their metastases with a control group of
non-metastatic tumours further supported this view with 17.3 mean genomic aberrations in metastases, 12.5 in their primary tumours and 4.5 in non-metastatic cases (Zhao et al. 2001). Finally, in non-functioning pancreatic tumours two subgroups with either a high or a low frequency of chromosomal markers loss (fractional allelic loss, FAL) were identified by genome-wide allelotype analysis (Rigaud et al. 2001). These genetic phenotypes correlated with the ploidy status. Low-FAL tumours were diploid whereas high-FAL tumours were aneuploid, a condition found to be associated with a significantly poorer clinical outcome (Rigaud et al. 2001).

Gut

The available data are particularly scanty regarding gastric endocrine tumours. In a study of such tumours, extensive losses of X-chromosomal markers were present in 4 malignant tumours (100% of informative markers), but were virtually absent in the 29 benign neoplasms investigated (D’Adda et al. 1999a). Such an association was not found in 17 midgut endocrine tumours that showed a very low frequency of X-chromosome allelic losses in malignant tumours (15% of informative markers investigated) and no losses in benign tumours. These findings support an association between X-chromosome LOH and malignancy in foregut endocrine tumours, in keeping with data obtained in the pancreatic counterparts with either a high or a low frequency of chromosomal markers loss (fractional allelic loss, FAL) were identified by genome-wide allelotype analysis (Rigaud et al. 2001). These genetic phenotypes correlated with the ploidy status. Low-FAL tumours were diploid whereas high-FAL tumours were aneuploid, a condition found to be associated with a significantly poorer clinical outcome (Rigaud et al. 2001).

Concluding remarks

The endocrine tumours of gut and pancreas display substantial differences in terms of phenotype and behaviour. Several variables including angioinvasion, the mitotic index and the overexpression/accumulation of p53 protein may be useful predictors of survival for patients with gastric and pancreatic tumours. More work is required to confirm their potential utility in tumours of the intestine. Information on the molecular basis of endocrine tumours is limited overall. The MEN1 gene appears to be involved in tumour induction of both poorly differentiated and well-differentiated tumours, at least for those of foregut derivation. Other tumour suppressor genes on chromosomes 3p25, 9p21, 18q21 and X have been suggested to participate in the mechanism of endocrine tumour induction and/or progression. In any case, a complex picture of multiple gene involvement is emerging. Extensive investigation on a large tumour series are needed to better delineate the data so far available.

Acknowledgements

This work was supported by grants from MURST (COFIN 01), AIRC Milan, and the University of Parma.

References


Endocrine-Related Cancer (2003) 10 427–436
Rindi and Bordi: Pathobiology of digestive endocrine tumours


Jahn R, Schiebler W, Ouimet C & Greengard P 1985 a 38 000-dalton membrane protein (p38) present in synaptic vesicles. PNAS 82 4137–4141.


Endocrine-Related Cancer (2003) 10 427–436


