BRAF and endocrine tumors: mutations are frequent in papillary thyroid carcinomas, rare in endocrine tumors of the gastrointestinal tract and not detected in other endocrine tumors

A Perren, S Schmid, T Locher, P Saremaslani, C Bonvin, P U Heitz and P Komminoth

Institute for Clinical Pathology, Department of Pathologie, University Hospital Zürich, Schmelzbergstr. 12, CH-8091, Switzerland

1Institut for Clinical Pathology, Kantonsspital Baden, Switzerland

(Requests for offprints should be addressed to A Perren; Email: Aurel.Perren@usz.ch)

Abstract

The tumorigenesis of sporadic endocrine tumors is still not fully understood. Activating point mutations of the serine/threonine kinase gene \(BRAF\) located on \(7q34\) are found in a wide range of malignancies, with the highest frequency (66%) occurring in malignant melanomas. Melanomas are tumors of neural-crest-derived cells as are medullary thyroid carcinomas, pheochromocytomas and paragangliomas. \(BRAF\) has not been examined in endocrine tumors of the diffuse neuroendocrine system or of neural-crest-derived cells.

We examined 130 endocrine tumors of the pancreas, parathyroid gland, adrenal medulla, paranganglia, lung and gastrointestinal tract as well as follicular and c-cell-derived thyroid tumors. We found a high rate of V559E mutations in papillary thyroid carcinomas (47%), one V599E mutation in a well-differentiated gastric endocrine carcinoma (malignant carcinoid), but no activating \(BRAF\) mutations in all other endocrine tumors examined. These results point towards different pathways in tumorigenesis of endocrine tumors of various localizations and only rare involvement of the MAP kinase (MAPK) pathway in a subset of malignant neuroendocrine tumors.

Endocrine-Related Cancer (2004) 11 855–860

Introduction

Activating mutations of the serine/threonine kinase gene \(BRAF\) located on chromosome \(7q34\) have recently been reported in a wide range of malignancies, with the highest frequency (66%) occurring in malignant melanomas (Davies et al. 2002). The described mutations are clustered in exons 11 and 15 and are located in the G-loop or activation segment of the gene. It was shown that transient transfection with \(V599E\) \(BRAF\) leads to a 10-fold increase of basal kinase activity and downstream activation of the MAP kinase (MAPK) pathway (Davies et al. 2002). The \(V599E\) missense mutation in exon 15 is found in more than 90% of mutated malignant melanomas (Davies et al. 2002). Interestingly, thus far no analyses of endocrine tumors have been conducted (with the exception of thyroid tumors), although there are several indications pointing towards a possible role of \(BRAF\) in this type of tumor also. First, like melanomas (Dupin & Le Douarin 2003), a subset of endocrine tumors including pheochromocytomas (PCCs), paragangliomas (PGLs) and medullary thyroid carcinomas (MTCs) evolve from neural-crest-derived cells (Pasini et al. 1996). Secondly, on a molecular genetic level, activation of tyrosine kinases (Ret mutations in MTCs and PCCs, Ret/PTC translocations or TM3/NTRK1 rearrangements producing the TRK oncogene in papillary thyroid carcinomas (PTCs) are known to be of importance at least in a subset of endocrine tumors. Thirdly, chromosomal gains of \(7q34\) have repeatedly been described in endocrine tumors, possibly an alternative mechanism leading to
Perren et al.: BRAF mutations in endocrine tumors

increased BRAF activity due to increased protein expression. More specifically, comparative genomic hybridization (CGH) studies have demonstrated gains of 7q in up to 66% of follicular thyroid carcinomas (FTCs) (Roques et al. 1999, Perissel et al. 2002), 30% of pancreatic endocrine tumors (PETs) (Speel et al. 1999, 2001, Stumpf et al. 2000), 10% of parathyroid adenomas (PTAs) (Agarwal et al. 1999, Perissel et al. 2000), gastrointestinal neuroendocrine tumors (GI-NETs) (Zhao et al. 2000), bronchial neuroendocrine tumors (B-NETs) (Zhao et al. 2000) and PGLs (Edstrom et al. 2000) and 5% of papillary thyroid carcinomas (PTC) (Singh 1998), gastrointestial neuroendocrine tumors (GI-NETs) (Zhao et al. 2000), bronchial neuroendocrine tumors (B-NETs) (Zhao et al. 2000) and PGLs (Edstrom et al. 2000) and 5% of papillary thyroid carcinomas (PTC) (Singh et al. 2000). We therefore investigated a series of 130 endocrine tumors of different organs for BRAF alterations in exons 11 and 15.

Materials and Methods

Tumor samples

Fresh frozen tissue and paraffin blocks were obtained from the files of the Department of Pathology, University Hospital Zurich. A total of 130 tumors were examined including 25 PETs, 10 PTAs, 16 PCCs (all without Ret mutations), 18 PGLs, 8 B-NETs and 6 GI-NETs (carcinoids, CDs), 25 MTCs (including one multiple endocrine neoplasia type 2a (MEN2a)-associated tumor, 7 tumors with somatic Ret exon 16 mutations and 13 tumors without Ret mutation), 7 FTCs and 15 PTCs. Tumor samples and corresponding normal tissue had been snap-frozen in liquid nitrogen after surgical removal and stored at −80°C. Where no fresh tissue was available, paraffin blocks of tumor and normal tissue were used. These tissue samples had been fixed in 4% buffered formalin and embedded in paraffin according to standard protocols.

Controls

Tumor DNA of a paraffin-embedded malignant melanoma with known BRAF V599E mutation was used as positive control; blood DNA of a healthy individual served as negative control.

Denaturing gradient gel electrophoresis (DGGE)-based mutation analysis

DNA from fresh frozen tissue was extracted using the Purgene-kit (GentaSystems, Minneapolis, MN, USA) according to the manufacturer’s recommendations. Where no frozen tissue was available, tumor and normal tissue were micro-dissected from 10µm tissue sections of paraffin blocks and the DNA extracted as previously described (Perren et al. 1998).

PCR using genomic DNA as template was carried out in a 50µl mixture of 1×PCR buffer (Perkin Elmer Europe, Ann Arbor, MI, USA) software. The amplicons were electrophoresed at 60°C and 100 V for 16 h. DNA strands were visualized using silver staining as described previously (Kommimnath et al. 1994). All samples were additionally cycle sequenced using an automated sequencer (Model 373A, Applied Biosystems, Foster City, CA, USA) and the Sequencher v.3.1.1 (Gene Codes Corp., Ann Arbor, MI, USA) software.

Results

BRAF exon 15 mutations were detected in 7 of 15 PTCs (47%). All mutations consisted of a thymidine to adenine exchange at nucleotide 1769 resulting in a valine to glutamate substitution of residue 599 (V599E). A representative DGGE gel and the sequence result is shown in Fig. 1.

In all 7 PTCs the V599E mutation was somatic in nature, thus it was absent in the germline DNA of the patients. Exon 11 mutations were absent in the 15 PTCs tested.

One gastric, well-differentiated endocrine carcinoma (malignant carcinoid) with liver metastasis showed a somatic BRAF V599E mutation, no alterations were detected in the remaining 5 gastrointestinal CDs.

No alterations indicative for mutations of BRAF exon 11 and 15 were identified in any of the 25 PETs, 10 PTAs, 16 PCCs, 18 PGLs, 25 MTCs, 7 FTCs and 8 bronchial CDs tested. The results are summarized in Table 2.
Discussion

We describe a high rate of somatic \textit{BRAF} exon 15 mutations in PTCs of classical type. All these \textit{BRAF} mutations were somatic as the sequence of the corresponding normal tissues was wild-type. These results are in agreement with reports, published during completion of this study, which described the same type of \textit{BRAF} exon 15 mutation in 36–69% of PTCs (Cohen \textit{et al.} 2003, Fukushima \textit{et al.} 2003, Kimura \textit{et al.} 2003, Namba \textit{et al.} 2003, Nikiforova \textit{et al.} 2003, Soares \textit{et al.} 2003, Xu \textit{et al.} 2003, Puxeddu \textit{et al.} 2004, Soares \textit{et al.} 2004, Trovisco \textit{et al.} 2004).

Figure 1 Top, DGGE pattern of \textit{BRAF} exon 15. Samples marked ‘+’ show an abnormal banding pattern. Bottom, the corresponding sequence analysis shows a heterozygous V599E mutation. Tu: Tumor; No: normal non neoplastic tissue.

<table>
<thead>
<tr>
<th>Tumor</th>
<th>No. of tumors</th>
<th>Braf 11</th>
<th>Braf 15</th>
<th>Ret 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET*</td>
<td>25</td>
<td>0/22</td>
<td>0/25</td>
<td>n.a.</td>
</tr>
<tr>
<td>CD lung</td>
<td>8</td>
<td>0/8</td>
<td>0/8</td>
<td>n.a.</td>
</tr>
<tr>
<td>CD gi</td>
<td>6</td>
<td>0/6</td>
<td>1/6</td>
<td>n.a.</td>
</tr>
<tr>
<td>PTA</td>
<td>10</td>
<td>0/10</td>
<td>0/10</td>
<td>n.a.</td>
</tr>
<tr>
<td>PCC</td>
<td>16</td>
<td>0/16</td>
<td>0/16</td>
<td>0/13</td>
</tr>
<tr>
<td>PGL</td>
<td>18</td>
<td>0/18</td>
<td>0/18</td>
<td>n.a.</td>
</tr>
<tr>
<td>PTC</td>
<td>15</td>
<td>0/15</td>
<td>7/15</td>
<td>n.a.</td>
</tr>
<tr>
<td>FTC</td>
<td>7</td>
<td>0/7</td>
<td>0/7</td>
<td>n.a.</td>
</tr>
<tr>
<td>MTC**</td>
<td>25</td>
<td>0/25</td>
<td>0/24</td>
<td>7/20</td>
</tr>
<tr>
<td>Total***</td>
<td>130</td>
<td>0/127</td>
<td>8/129</td>
<td></td>
</tr>
</tbody>
</table>

PET, pancreatic endocrine tumor (*including 3 MEN1-associated PETs); CD lung, bronchial neuroendocrine tumors (carcinoids); CD gi, gastrointestinal neuroendocrine tumors (carcinoids); PTA, parathyroid adenoma; PCC, pheochromocytoma; PGL, paragangliomas; PTC, papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; MTC, medullary thyroid carcinoma (**including 1 MEN2a-associated MTC); ***numbers do not add up, some exons could not be amplified by PCR.
al. 2004, Xing et al. 2004). Thus, the pathway of PTCs appears to be elucidated since either a tyrosin kinase receptor (Ret/PTC translocation, TRK mutation) or the downstream tyrosin kinase BRAF are affected on a genetic level.

BRAF is a member of the MAPK pathway inducing a mitogenic response upon stimulation of tyrosine kinase receptors (Liebmann 2001). In colon carcinomas, BRAF mutations were only found in tumors without K-RAS mutations, indicating an equivalent tumorigenic effect (Davies et al. 2002, Rajagopalan et al. 2002). A similar exclusive correlation was observed in PTCs for BRAF mutations and Ret/PTC translocations. Kimura et al. (2003) and Soares et al. (2003) showed no overlap between tumors with Ret/PTC translocation, BRAF or RAS mutations in 78 and 50 PTCs respectively, indicating that in PTCs the two alterations lead to very similar downstream effects. Our series included one PTC with an inactivating PTEN mutation and concomitant loss of PTEN protein expression (Dahia et al. 1997, Gimm et al. 2000), but no BRAF exon 15 mutation. As BRAF is known to be downstream of G protein-coupled receptor (GPCR) signaling (Liebmann 2001), the inactivating mutation of the tumor suppressor PTEN could lead to a similar downstream effect.

The work presented is the first study examining BRAF in endocrine tumors other than PTCs and FTCs. We detected one somatic BRAF V599E mutation in a metastasizing endocrine tumor of the stomach (malignant carcinoids). This is evidence for a rare involvement of the MAPK pathway in these tumors. The fact that a malignant endocrine tumor bears this mutation might be indicative for an event of tumor progression. Interestingly, we previously described a similar phenomenon of a PET harboring a PTEN mutation (Perren et al. 2000) which also turned out to be of a malignant phenotype.

The absence of BRAF exon 11 and 15 mutations in all other examined types of endocrine tumors — including the neural-crest-derived MTC, PGL and PCC — seems interesting. In addition to MEN2-associated familial MTC, PCC and PTA, a subset of sporadic forms of the first two tumors are also known to harbor activating Ret tyrosine kinase receptor mutations (Kommminth et al. 1995, van der Harst et al. 1998). However, we did not detect any BRAF mutation in sporadic MTCs, PCCs and PGLs. The Ret mutation status of the MTCs and PCCs of this study was known and 7 MTC samples with somatic Ret M918T mutation as well as one MEN2a (C634Y)-associated MTC were included (Table 2). Somatic or germline Ret mutations were absent in all 13 informative PCC samples. Therefore BRAF mutations are absent in these tumors irrespective of Ret mutation status. These data are indirect evidence that signaling of the constitutively active forms of mutated Ret differs from Ret/PTC translocation induced signaling. In neural-crest-derived tumors, pathways other than the MAPK downstream pathway of Ret seem to be of importance. On the other hand, FTCs are more likely to harbor RAS mutations than PTCs; however, we and others could not detect any BRAF V599E mutation in FTCs.

In summary our study confirms a high rate of BRAF V599E mutations in PTCs. We detected a single V599E mutation in a metastasizing gastric endocrine carcinoma which might point towards a role of the MAPK pathway in malignant transformation of these tumors. BRAF mutations were absent in all neural-crest-derived tumors including MTCs, PCCs and PGLs. As a subset of these tumors is known to contain activating Ret mutations, our results indicate that pathways other than the MAPK pathway are downstream targets of Ret mutations in these tumors.

Funding

This study was supported in part by the Swiss National Science Foundation (SOF 31-61884.00) and the Swiss Cancer League (KFS-00997-02-2000). There is no conflict of interest that would prejudice the impartiality of the research.

References

