High tumoral levels of *Kiss1* and G-protein-coupled receptor 54 expression are correlated with poor prognosis of estrogen receptor-positive breast tumors

Didier Marot1,2,3, Ivan Bieche4, Chantal Aumas5, Stéphanie Esselin1, Céline Bouquet1, Sophie Vacher4, Gwendal Lazennec6, Michel Perricaudet1, Frédérique Kuttenn7, Rosette Lidereau4 and Nicolas de Roux2,5,8

1Vectorologie et Transfert de Gènes, CNRS UMR 8121, Institut Gustave Roussy, 94805 Villejuif Cedex, France
2Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hopitaux de Paris, Hôpital Bicêtre, 75 rue du General Leclerc, 94270 Le Kremlin Bicêtre, France
3Biochimie Médicale et Biologie Moléculaire, CNRS UMR 6198, Faculté de Médecine, 51095 Reims Cedex, France
4Laboratoire d’Oncogénétique, INSERM U735, Centre René Huguenin, 92210 St-Cloud, France
5INSERM U690, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France
6INSERM U844, 34090 Montpellier, France
7Service d’Endocrinologie et Médecine de la Reproduction, Hôpital Pitié Salpêtrière, 47-83, boulevard de l’Hôpital, 75651 Paris Cedex 13, France
8Faculté de Médecine Paris Sud, Université Paris XI, 94275 Le Kremlin Bicêtre, France

(Correspondence should be addressed to N de Roux; Email: deroux@rdebre.inserm.fr)

Abstract

KiSS1 is a putative metastasis suppressor gene in melanoma and breast cancer-encoding kisspeptins, which are also described as neuroendocrine regulators of the gonadotropic axis. Negative as well as positive regulation of *KiSS1* gene expression by estradiol (E2) has been reported in the hypothalamus. Estrogen receptor α (ERα level is recognized as a marker of breast cancer, raising the question of whether expression of *KiSS1* and its G-protein-coupled receptor (*GPR54*) is down- or upregulated by estrogens in breast cancer cells. *KiSS1* was found to be expressed in MDA-MB-231, MCF7, and T47D cell lines, but not in ZR75-1, L56Br, and MDA-MB-435 cells. *KiSS1* mRNA levels decreased significantly in ERα-negative MDA-MB-231 cells expressing recombinant ERα. In contrast, tamoxifen (TAM) treatment of ERα-positive MCF7 and T47D cells increased *KiSS1* and *GPR54* levels. The clinical relevance of this negative regulation of *KiSS1* and *GPR54* by E2 was then studied in postmenopausal breast cancers. *KiSS1* mRNA increased with the grade of the breast tumors. ERα-positive invasive primary tumors expressed sevenfold lower *KiSS1* levels than ERα-negative tumors. Among ERα-positive breast tumors from postmenopausal women treated with TAM, high *KiSS1* combined with high *GPR54* mRNA tumoral levels was unexpectedly associated with shorter relapse-free survival (RFS) relative to tumors expressing low tumoral mRNA levels of both genes. The contradictory observation of putative metastasis inhibitor role of kisspeptins and RFS to TAM treatment suggests that evaluation of *KiSS1* and its receptor tumoral mRNA levels could be new interesting markers of the tumoral resistance to anti-estrogen treatment.

Endocrine-Related Cancer (2007) 14 691–702

Introduction

KiSS1 was first described as a gene encoding a protein involved in metastasis inhibition of melanoma and breast cancer (Lee *et al.* 1996, Lee & Welch 1997a,b). Loss of *KiSS1* expression has also been correlated with increased metastasis and/or cancer progression in malignant pheochromocytoma (Ohta *et al.* 2005), esophageal squamous cell carcinoma (Ikeguchi *et al.* 2004), bladder (Sanchez-Carbayo *et al.* 2003), ovarian (Jiang *et al.* 2005), gastric (Dhar *et al.* 2004), and pancreatic (Masui *et al.* 2004) tumors. In contrast, an increase in *KiSS1* expression with higher grade and metastatic capacity has
been observed in breast tumors (Martin et al. 2005) and hepatocellular carcinoma (Ikeguchi et al. 2003). KiSS1 encodes a 145-amino acid peptide that is further processed in the placenta to several truncated peptides of 10–54 residues called kisspeptins: these are the natural ligands of the G-protein-coupled receptor (GPR54; Kotani et al. 2001, Muir et al. 2001, Ohtaki et al. 2001, Bilban et al. 2004). GPR54-mediated anti-metastatic effects of Kp-54 (also known as metastin) and derived peptides have been reported in various cancer cell lines (Hori et al. 2001, Stafford et al. 2002, Masui et al. 2004, Becker et al. 2005).

The GPR54 pathway has also been implicated in the regulation of the hypothalamic–pituitary–gonadal axis. Functional integrity of GPR54 is indispensable for the normal function of the gonadotropic axis in humans (de Roux et al. 2003, Seminara et al. 2003, Lanfranco et al. 2005, Semple et al. 2005, Tenenbaum-Rakover et al. 2007) as well as mice (Funes et al. 2003, Seminara et al. 2003). In vivo administration of kisspeptin leads to a rapid increase in luteinizing hormone and follicle-stimulating hormone blood levels in humans (Dhillo et al. 2005), nonhuman primates (Plant et al. 2006), and rodents (Irwig et al. 2004, Navarro et al. 2005a,b, Patterson et al. 2006). Positive as well as negative regulation of KiSS1 mRNA levels by steroid hormones has been reported in different nuclei of rat hypothalamus (Smith et al. 2005a,b). This regulation probably results from a direct effect of estradiol (E₂) as estrogen receptor α (ERα) is expressed within kisspeptin-immunoreactive cells present in the preoptic area and arcuate nucleus of the ovine hypothalamus (Franceschini et al. 2006).

A body of evidence supports the notion that ERα-mediated pathways play a critical role in breast carcinogenesis (Clarke et al. 2004). ERα level is consensually used as a prognostic marker of breast tumors and of the response to endocrine therapy (Clarke et al. 2004). In this study, we questioned whether KiSS1 and/or GPR54 expression is regulated by estrogen signaling pathways in breast cancer cell lines and whether this regulation may have clinical relevance in the evaluation of the tumoral response to tamoxifen (TAM) treatment.

Materials and methods

Cell lines and recombinant adenoviruses

All breast tumor cell lines were obtained from the American Type Culture Collection (Manassas, VA, USA) and were maintained in red phenol-free Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies Inc., Gaithersburg, MD, USA). All media were supplemented with 2 mM l-glutamine, and 10% fetal bovine serum, 100 IU/ml penicillin, and 100 mg/ml streptomycin (Gibco). E₂ and TAM were purchased from Sigma–Aldrich.

All the adenovirus (Ad) vectors used in this study were non-replicative E1/E3-defective recombinant adenoviruses. AdCO1 was the control virus, carrying no insert. AdERα and AdERβ were previously described (Lazennec et al. 2001).

Optimal infection (MOI) was determined by staining for β-galactosidase activity after infection with AdLacZ as described previously (Randrianarison et al. 2001). For MDA-MB-231 cells, 8000 adenoviral particles per cell (vp/ml) were chosen as an optimal compromise between maximal efficiency of infection and minimal virus-induced cytopathic effect (data not shown).

Patients and samples

We analyzed samples of 92 primary breast tumors excised from women at our institution from 1980 to 1994. Tumor tissue samples of the 92 patients were collected in accordance with French regulations. Samples containing more than 70% tumor cells were considered suitable for this study.

The patients met the following criteria: primary unilateral non-metastatic postmenopausal invasive ductal carcinoma of the breast; ERα positivity (as determined at the protein level by biochemical methods (dextran-coated charcoal method until 1988 and enzymatic immunoassay thereafter) and confirmed by ERα real-time quantitative RT-PCR assay); complete clinical, histological, and biological information available; no radiotherapy or chemotherapy before surgery; and full follow-up at our institution. Standard prognostic factors are shown in Table 1. The patients had physical examinations and routine chest radiography every 3 months for 2 years, then annually. Mammograms were performed annually. The median follow-up was 7.7 years (range 1.5–15.0 y). All patients received postoperative adjuvant endocrine therapy (20 mg TAM daily for 3–5 years), and no other treatment; 27 patients relapsed. The first relapse events were distributed as follows: 23 metastases, and 4 local and/or regional recurrences with metastases.

To investigate the relationship between mRNA levels of KiSS1 and GPR54 and ERα-expression status, we also analyzed 36 additional primary breast tumors: 12 ERα negative and 24 ERα positive.

To investigate the relationship between mRNA levels of KiSS1 and GPR54 during breast cancer progression, we analyzed RNA pools of normal breast
Western blot analysis

Nuclear protein extract (100 μg) was analyzed for steroid hormone receptor status by 10% Tris–glycine gel electrophoresis followed by western blot analysis. Primary antibodies against ERβ (GR40) were purchased from Oncogene Research Products (Cambridge, UK), and antibodies against ERα (HC-20) and actin (I-19) from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The secondary peroxidase-conjugated goat anti-mouse IgG was from Jackson ImmunoResearch Laboratories (West Grove, PA, USA), the donkey anti-rabbit IgG (Na934) was from Amersham Life Sciences, and the donkey anti-goat IgG was from Santa Cruz Biotechnology.

Immunofluorescence staining

Twenty-four hours after plating on polylysine-coated slides, cells were fixed with 3.7% paraformaldehyde in PBS for 15 min, and rinsed three times with PBS. They were then incubated in PBS containing 2% BSA for 1 h, permeabilized with 0.2% Triton X-100, and then incubated with an anti-Kp-10 polyclonal rabbit antibody (1/200) for 1 h (Franceschini et al. 2006). After washing, cells were incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG (Molecular Probes, Eugene, OR, USA) for 1 h at room temperature. Slides were analyzed under a Leica fluorescence microscope.

Reverse transcription

Total RNA was isolated from cultured cells or human tissues with TRIZOL (Invitrogen) and quantified by u.v. 260/280 nm absorption ratio. The quality of the RNA samples was determined by 1% agarose gel. Total RNA (1 μg) was reverse transcribed in a final volume of 20 μl using MuLVRT (Perkin–Elmer, Waltham, MA, USA) as per the manufacturer’s instructions. Negative controls (1 μg RNA sample) were included in each PCR to exclude genomic DNA contamination.

Semiquantitative RT-PCR

Semiquantitative reverse transcriptase (RT) PCR was used to screen a number of human breast cancer cell lines. cDNA was used as the template for PCR and the reaction mixture contained 5% DMSO. The thermal cycling conditions comprised one cycle for 2 min at 94 °C, 25–40 cycles at 94 °C for 45 s, 60 °C, or 55 °C (ERα and β-actin respectively) for 45 s, and 72 °C for 30 s. The PCR products were resolved on 3% low-melting agarose gels. Amplification of the β-actin fragment was used for RT normalization. The primer pairs are given in Table 2.

Real-time RT-PCR

Breast tumor cell lines

To investigate the transcriptional regulation of KiSS1 and GPR54 expression by estrogen pathways, we analyzed breast tumor cell lines by quantitative PCR using the fluorescent Taqman methodology. Oligonucleotide primers and Taqman probes for KiSS1 and GPR54 genes were as previously described (Ohtaki et al. 2001).

All PCRs were performed using the ABI Prism 7700 Sequence Detection System (Perkin–Elmer Applied Biosystems) under the conditions recommended by the manufacturer. Briefly, the thermal cycling conditions...
Results expressed as N-fold differences in target gene expression relative to the TBP (or RPLP0) gene, and termed N_{target}, were determined as $N_{\text{target}} = 2^{\Delta C_{\text{sample}}}$, where the ΔC_I value of the sample is determined by subtracting the average C_I value of the target gene from the average C_I value of the TBP (or RPLP0) gene (Bieche et al. 1999, 2001a).

Table 2 Primer pairs used for RT-PCR amplification of transcripts in breast tumor cells

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERα</td>
<td>F 5'-CAGGCCCTCCAGCACTATGGGATG-3'</td>
</tr>
<tr>
<td></td>
<td>R 5'-CGGGAGTCTTTTCTTCTTCTTTAGAG-3'</td>
</tr>
<tr>
<td>ERβ</td>
<td>F 5'-GGTCCATGCAGGATGTTTACAC-3'</td>
</tr>
<tr>
<td></td>
<td>R 5'-GGACCCACCTTCTCCACCTC-3'</td>
</tr>
<tr>
<td>KiSS1</td>
<td>1Fa 5'-GGACCCCTGCTTTCTTCACAG-3'</td>
</tr>
<tr>
<td></td>
<td>1Rα 5'-ATTCTAGCTGTCGCTGCTTTG-3'</td>
</tr>
<tr>
<td></td>
<td>2Fa 5'-TTCTAGACCCACAGGCGCATGAG-3'</td>
</tr>
<tr>
<td></td>
<td>2Rα 5'-GGACCCCTGCTTTCTTCAAG-3'</td>
</tr>
<tr>
<td>GPR54</td>
<td>1Fa 5'-AACCTCTACATCGCACCAGCT-3'</td>
</tr>
<tr>
<td></td>
<td>1Rα 5'-CAGGGACTCGCCACCCGCGTA-3'</td>
</tr>
<tr>
<td></td>
<td>2Fa 5'-CGACTTCTATGTCGCAATGTCGTC-3'</td>
</tr>
<tr>
<td></td>
<td>2Rα 5'-CACACCTATGCCGTCGCAGAG-3'</td>
</tr>
<tr>
<td>β-Actin</td>
<td>F 5'-GAGGCATTTGCGGTGAGCAT-3'</td>
</tr>
<tr>
<td></td>
<td>R 5'-TCTCTGTGCATCCACAAACT-3'</td>
</tr>
</tbody>
</table>

F, forward; R, reverse. aPrimers used in SYBR green methodology (see Materials and methods).

comprised an initial denaturation step at 95 °C for 10 min, 40 cycles at 95 °C for 15 s, and 60 °C for 1 min. Experiments were performed with duplicates for each data point.

We compared the KiSS1 and GPR54 mRNA levels of breast tumor cell lines with a human placenta sample as a positive control. Final results were calculated using the equation $2^{\Delta C_I \text{ sample} - \Delta C_I \text{ calibrator}}$, where ΔC_I values of the sample and calibrator are determined by subtracting the average C_I value of the target gene from the average C_I value of RNA 18S (internal control). Primers for 18S were from Perkin–Elmer Applied Biosystems. Each sample was normalized such that the quantitative values corresponding to the placenta sample equaled 1.00.

Breast tumors

To investigate the quantitative relationship between KiSS1 and GPR54 mRNA levels and ERα expression during breast cancer progression, we analyzed normal breast tissue and primary breast tumors by quantitative PCR using the fluorescent SYBR green methodology. RNA extraction, cDNA synthesis, and PCR conditions were as in Bieche et al. (2001a). Briefly, the thermal cycling conditions comprised an initial denaturation step at 95 °C for 10 min, 50 cycles at 95 °C for 15 s, and 65 °C for 1 min. Each sample was normalized on the basis of two endogenous RNA control genes involved in two cellular metabolic pathways, namely TATA-binding protein (TBP; Genbank accession NM_003194) and Ribosomal Protein Large P0 (RPLP0; Genbank accession NM_001002). Primers for TBP, RPLP0, and ERα genes were as described previously (Bieche et al. 1999, 2001a).

Statistical analysis

As the mRNA levels did not fit a Gaussian distribution, a) the mRNA levels in each subgroup of samples were characterized by their median values and ranges, rather than their mean values and coefficients of variation, and b) relationships between the molecular markers, and clinical and biological parameters were tested by nonparametric Mann–Whitney U test (Mann & Whitney 1947). Differences between two populations were judged significant at confidence levels greater than 95% ($P < 0.05$).

To visualize the capacity of a given molecular marker to discriminate between two populations, in the absence of an arbitrary cutoff value, we summarized the data in a ROC (receiver operating characteristics) curve (Hanley & McNeil 1982). These curves plot sensitivity (true positives) on the y-axis against 1-specificity (false positives) on the x-axis, considering each value as a possible cutoff. The area under the curve (AUC) was calculated as a single measure of the discriminatory capacity of each molecular marker. When a molecular marker has no discriminative value, the ROC curve lies close to the diagonal and the AUC is close to 0.5. When a marker has strong discriminative value, the ROC curve moves to the upper left-hand corner (or to the lower right-hand corner), and the AUC is close to 1.0 (or 0).

Relapse-free survival (RFS) was determined as the time interval between diagnosis and detection of the first relapse (local and/or regional recurrence, and/or distant metastasis). Survival distributions were estimated by the Kaplan–Meier method (Kaplan & Meier 1958), and the significance of differences between survival rates was ascertained using the log-rank test (Peto et al. 1977).

Results

Expression of KiSS1 and GPR54 in breast tumor cell lines

KiSS1 and GPR54 mRNA status was studied in six breast tumor cell lines (T47D, MCF7, ZR75-1, MDA-MB-231, MDA-MB-435, and L56Br; Fig. 1). Semi-quantitative RT-PCR performed with two primers,
located within exon 2 and at the junction between exons 2 and 3, showed high \(KiSS1\) mRNA levels in MDA-MB-231, similar to those observed in the human placenta sample (Fig. 1A). MCF7 and T47D cells expressed lower \(KiSS1\) mRNA levels than MDA-MB-231 cells. No expression of \(KiSS1\) was detected in ZR75-1 or L56Br cells. Our results confirmed the absence of \(KiSS1\) expression in MDA-MB-435 cells, as previously reported (Lee et al. 1996, Lee & Welch 1997b, Ohtaki et al. 2001). \(GPR54\) mRNA was found in MCF7, T47D, and ZR75-1 breast tumor cells, but not in MDA-MB-435 cells, similar to the human placenta sample (Fig. 1A). MDA-MB-231, T47D, and MDA-MB-435 breast tumor cells were fixed and stained with an anti-metastin antibody as described in Materials and methods.

![Figure 1](image1.png)

Figure 1 Expression of \(KiSS1\) and \(GPR54\) in breast tumor cell lines. (A) RT-PCR amplification conditions are described in Materials and methods. Semiquantitative PCR products were analyzed by 3% low-melting agarose gel electrophoresis. B. MDA-MB-231, T47D, and MDA-MB-435 breast tumor cells were fixed and stained with an anti-metastin antibody as described in Materials and methods.

Er \(ERz\) and \(ER\beta\) protein levels were detected in T47D and ZR75-1 breast tumor cells (Fig. 2). In contrast, MDA-MB-231 and MDA-MB-435 cells showed no \(ERz\) or \(ER\beta\) expression. These latter two cell lines expressed neither the progesterone receptor nor the androgen receptor (data not shown).

To study the effects of \(E2\) on \(KiSS1\) gene expression, \(ERz\)-negative MDA-MB-231 cells were infected with recombinant adenoviruses encoding \(ERz\) (Ad\(ERz\)) and \(ER\beta\) (Ad\(ER\beta\)) (Fig. 3A). Twenty-four hours postinfection, \(KiSS1\) mRNA level was determined by real-time RT-PCR. \(ERz\)-negative MDA-MB-231 cells expressed a high level of \(KiSS1\) mRNA (Fig. 3B). However, 12 h after addition of \(10^{-7}\) ME2 to the medium, we observed a significant decrease in \(KiSS1\) mRNA levels of Ad\(ERz\)- and Ad\(ER\beta\)-infected MDA-MB-231 cells, by 3.3 \(\pm\) 0.45- and 4.6 \(\pm\) 0.45-fold respectively, relative to cells infected with control adenovirus (AdCO1) only \((P < 0.005)\). In contrast, the addition of \(E2\) alone or the

![Figure 2](image2.png)

Figure 2 Expression of \(ERz\) and \(ER\beta\) in breast tumor cell lines. Nuclear cell extracts (100 \(\mu\)g) were separated by 10% tris–glycine gel electrophoresis, transferred to a nitrocellulose filter and immunoblotted for \(ERz\), \(ER\beta\) and \(\beta\)-actin as described in Marot et al. (2006).
reintroduction of ERα or ERβ without E2 did not change KiSS1 transcript levels.

TAM upregulation of KiSS1 and GPR54 mRNA expression in ERα-positive cells

As reintroduction of ER in the presence of E2 induced negative regulation of KiSS1, we tested whether functional inhibition of ER would induce an increase in KiSS1 gene expression in ER-expressing cells. T47D, MCF7, and ZR75-1 ER-positive cells were cultured in phenol red-free DMEM medium without (control) or with the synthetic anti-estrogen TAM (10^{-6} M) for 24 h. TAM induced a three- and twofold increase in KiSS1 expression in MCF7 and T47D cells respectively (Fig. 4A; \(P < 0.05 \)). It is worth noting that in ZR75-1 cells, KiSS1 levels after the addition of TAM remained undetectable. GPR54 mRNA levels in Tam-treated MCF7, T47D, and ZR75-1 cells increased 2.5-, 3.4-, and 7.3-fold respectively (Fig. 4B; \(P < 0.05 \)).

Increase in KiSS1 mRNA levels with breast tumor grade

Levels of KiSS1 and GPR54, as well as of the gene \(MKI67 \) that encodes the proliferation-related antigen Ki-67, were studied in a set of five breast tumor pools relative to normal breast tissue (Table 3). Pools of normal breast tissues, benign breast tumors, ductal carcinoma \(\text{in situ} \), ERα-positive invasive ductal grade I breast tumors, ERα-positive invasive ductal grade III breast tumor cells. MDA-MB-231 cells were infected with AdCO1, AdERα and AdERβ at a MOI of 8000 pv/cell. After 12 h, DMEM was supplemented with 10^{-7} ME2. (A) Nuclear cell extracts were subjected to immunoblotting using anti-ERα, anti-ERβ, and anti-β-actin antibodies (Marot et al. 2006). T47D cells were used as positive controls of ERα and ERβ expression. (B) Twenty-four-hour postinfection, KiSS1 mRNA levels in MDA-MB-231 cells were determined by real-time RT-PCR. KiSS1 mRNA levels are expressed relative to placental levels set to 1. Transcript values are representative of at least two independent experiments.

![Figure 3](image-url)
breast tumors, and ER\(\alpha\)-negative invasive ductal grade III breast tumors were each prepared by mixing identical amounts of tumor RNA from five patients.

Relative to normal mammary tissue, levels of KiSS1 mRNA were higher in benign tumors and ductal carcinoma in situ (\(\sim 2.5\)-fold). No difference was observed for GPR54 mRNA levels. For grade III invasive ductal tumor pools, higher KiSS1 mRNA levels were measured in ER\(\alpha\)-negative tumors than in ER\(\alpha\)-positive ones (\(\sim 56\) and 11-fold higher than in normal tissue respectively). A high level of GPR54 mRNA was also detected in invasive tumors, although this level was twofold higher in ER\(\alpha\)-positive than in ER\(\alpha\)-negative breast tumors (\(\sim 31\)- and 16-fold higher than in normal tissue respectively). MKI67 level increased with the grade of the tumors but no difference was observed between ER\(\alpha\)-negative and ER\(\alpha\)-positive tumors. Immunohistochemistry analysis with a polyclonal antibody against the C-terminal end of Kp54 has confirmed that tumors expressing high KiSS1 mRNA levels also expressed metastin as a peptide (data not shown).

mRNA expression of KiSS1 and GPR54 in 24 ER\(\alpha\)-positive breast tumors and 12 ER\(\alpha\)-negative breast tumors

To further investigate quantitative relationships between mRNA levels of KiSS1, GPR54, and ER\(\alpha\), we analyzed 36 primary breast tumors: 12 ER\(\alpha\)-negative and 24 ER\(\alpha\)-positive. The median level of ER\(\alpha\) mRNA was set at 1 (arbitrary units; range 0.2–5.1) in the ER\(\alpha\)-negative breast tumor group and 711 (range 70.8–1938) in the ER\(\alpha\)-positive breast tumor group (\(P=0.0\ 000\ 014\)). KiSS1 mRNA level was significantly lower (approximately sevenfold) in the 24 ER\(\alpha\)-positive breast tumors when compared with the 12 ER\(\alpha\)-negative breast tumors, while GPR54 mRNA was slightly (but not significantly) higher (\(\sim 3.7\)-fold) in the former versus the latter (Table 4).

Table 3

<table>
<thead>
<tr>
<th></th>
<th>KiSS1</th>
<th>GPR54</th>
<th>Ki-67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign tumors</td>
<td>2.5</td>
<td>0.68</td>
<td>5.2</td>
</tr>
<tr>
<td>Ductal carcinoma in situ</td>
<td>2.7</td>
<td>0.23</td>
<td>17.5</td>
</tr>
<tr>
<td>ER(\alpha)-positive invasive ductal tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade I</td>
<td>5.9</td>
<td>31.9</td>
<td>14.4</td>
</tr>
<tr>
<td>Grade II</td>
<td>11.1</td>
<td>31.2</td>
<td>29.4</td>
</tr>
<tr>
<td>Grade III tumors</td>
<td>56.8</td>
<td>16.5</td>
<td>27.7</td>
</tr>
</tbody>
</table>

Table 4

Statistical analyses of KiSS1 and G-protein-coupled receptor (GPR54) expressions in estrogen receptor \(\alpha\) (ER\(\alpha\))-positive breast tumors relative to ER\(\alpha\)-negative breast tumors. Total RNA was reverse transcribed and analyzed by quantitative PCR. mRNA levels are relative to levels in ER\(\alpha\)-negative breast tumors (1.0 arbitrary units).

<table>
<thead>
<tr>
<th></th>
<th>ER(\alpha)-negative (n=12)</th>
<th>ER(\alpha)-positive (n=24)</th>
<th>(P^a)</th>
<th>ROC-AUC(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KiSS1</td>
<td>1.0 (0.24–2.96)</td>
<td>0.14 (0.01–8.96)</td>
<td>0.00006</td>
<td>0.083</td>
</tr>
<tr>
<td>GPR54</td>
<td>1.0 (0.11–15.3)</td>
<td>3.71 (0.03–53.8)</td>
<td>NS</td>
<td>0.700</td>
</tr>
<tr>
<td>ER(\alpha)</td>
<td>1.0 (0.2–5.1)</td>
<td>711 (70.8–1938)</td>
<td>0.0000014</td>
<td>1.000</td>
</tr>
</tbody>
</table>

\(^a\) Log-rank test: NS, not significant.

\(^b\) Scarff Bloom Richardson classification: ROC-AUC, receiver operating characteristics-area under curve.
Two unrelated molecular markers may provide a more accurate prediction of hormone responsiveness when considered together rather than individually. As KiSS1 expression was not related to GPR54 expression in this series of 92 tumors, and both KiSS1 and GPR54 mRNA tumoral levels were linked or tended towards linkage to RFS, we combined KiSS1 and GPR54 statuses to identify four separate prognostic subgroups (23 patients in each) with significantly different RFS curves. The patients with the poorest prognosis had high KiSS1 mRNA levels and high GPR54 mRNA levels (high–high subgroup, 8-year RFS 48.3% \pm 12.4), while those with the best prognosis had low KiSS1 mRNA levels and low GPR54 mRNA levels (low–low subgroup, 8-year RFS 90.2% \pm 6.6) \((P=0.007; \text{Fig. 5B})\). The other two subgroups, low KiSS1/high GPR54 (8-year RFS 75.1% \pm 9.8) and high KiSS1/low GPR54 (8-year RFS 67.2% \pm 10.4), exhibited intermediate outcomes.

Discussion

KiSS1 is a human tumor metastasis suppressor gene with a specific role in breast and melanoma tumor development (Lee et al. 1996, Lee & Welch 1997b, Ohtaki et al. 2001). We investigated the hypothesis that KiSS1 expression is regulated by estrogen signaling pathways in breast tumors by following two arguments: differential regulation of KiSS1 hypothalamic levels has been observed in ovariectomized rats after E2 administration (Smith et al. 2005a,b) and ERz is considered an important prognostic factor for breast tumors.

To study the complex expression of KiSS1 and GPR54, we used several primer pairs and PCR methodologies (SYBR green and Taqman) with different housekeeping genes. Three breast tumor cell lines (ERz-negative MDA-MB-231 and ERz-positive T47D and MCF7) expressed high and low KiSS1 mRNA levels when compared with a placenta sample. We also observed low levels of GPR54 mRNA in three ERz-positive cell lines, MCF7, T47D, and ZR75-1.

In this study, we showed regulation of the expressions of KiSS1 and its receptor through estrogen signaling pathways in breast tumor cell lines. We reported a significant E2-induced decrease in KiSS1 mRNA level in AdERz- and AdERz-infected ER-negative MDA-MB-231 cells when compared with Ad control-infected cells. Interestingly, the contribution of ERz in ER-deficient breast tumor cells is as effective as the reintroduction of ERz. Conversely, TAM administration upregulated KiSS1 and GPR54 expression in ER-positive breast tumor cells. These findings are in agreement with previous data in female rodents in which E2 treatment reversed the increase in hypothalamic KiSS1 mRNA level induced by ovariectomy (Navarro et al. 2004, Smith et al. 2005a). However, in contrast to our results showing similar downregulation by ERz and ERz, selective ERz agonist did not prevent the hypothalamic KiSS1 mRNA increase after ovariectomy (Navarro et al. 2004).

Recently, activator protein 2 (AP-2z has been described as a possible positive transcriptional regulator of KiSS1 in breast cancer cell lines via interaction with specificity 1 protein (Sp1; Mitchell et al. 2006). AP-2z mRNA level is downregulated by estrogens in breast tumors (Orso et al. 2004), suggesting that the effect of E2 on KiSS1 expression may be mediated by a decrease in AP-2z level. Cofactor required for Sp1-3 (CRSP3) and TXNIP (thioredoxin-interacting protein) are also candidate transcription factors for upregulation of KiSS1 expression in melanoma (Goldberg et al. 2003). These findings converge with our results to indicate that ER-mediated regulation of KiSS1 transcription.

Figure 5 Correlation between KiSS1 and GPR54 mRNA tumoral levels and relapse-free survival (RFS). (A) RFS curves for breast tumors with low KiSS1 gene expression (blue line) and high KiSS1 gene expression (black line). (B) RFS curves for breast tumors with both low KiSS1 and low GPR54 gene expression (blue line), and both high KiSS1 and high GPR54 gene expression (black line).
predominates in the complex transcriptional context of mammary tumor progression.

These results are of primary clinical importance for correlating KiSS1 expression levels with breast tumor progression. KiSS1 expression was analyzed in a series of primary breast tumors according to histological grade and ERα status. High levels of KiSS1 were detected in breast tumors but not in normal mammary tissues. KiSS1 level was high in the first stages of the disease and increased with tumor progression, whereas GPR54 expression increased in invasive ductal tumors but not in benign tumors or ductal carcinoma in situ. The correlation between KiSS1 levels and tumor progression confirmed the results reported by Martin et al. (2005). The rise in GPR54 appears to correlate better with metastatic capacity than with tumor growth, suggesting that the control of invasive properties in breast tumors requires simultaneous overexpression of KiSS1 and its receptor. A similar increase in GPR54 mRNA levels has been observed in malignant tumors when comparing renal cell carcinoma with adjacent normal tissue (Lenburg et al. 2003). There are similarities in the behaviors of invasive trophoblasts and invasive breast cancer cells (Murray & Lessey 1999). Our results are thus in agreement with the proposed role for KiSS1/GPR54 autocrine and/or paracrine signaling pathways in trophoblast cells during gestation (Bilban et al. 2004, Terao et al. 2004). KiSS1 appears to be a molecular marker for human breast tumors and GPR54 a marker of invasive-grade tumors.

Despite the high KiSS1 mRNA levels in breast tumors relative to normal breast tissue, KiSS1 expression was negatively associated with ERα status in these tumors. We also observed a high variability of KiSS1 expression in ERα-positive tumors, suggesting that KiSS1 expression level appeared to be an attractive molecular marker for predicting TAM responsiveness of ERα-positive postmenopausal breast cancers. In ER-positive tumors, high KiSS1 and GPR54 mRNA levels were significantly associated with shorter RFS for postmenopausal women with unilateral invasive primary breast tumors: the outcome for patients with high KiSS1 and GPR54 levels was worse than for those with low KiSS1 and GPR54 levels. Although KiSS1 mRNA level (as well as the combination KiSS1 and GPR54 mRNA level) was found to be a significant predictor of patient outcome in univariate analyses, when adjusting for known prognostic markers such as SBR histological grade and macroscopic tumor size (Table 1) using multivariate Cox analyses, KiSS1 mRNA level (and the combination KiSS1/GPR54) was no longer significantly associated with RFS. This finding may be due, in part, to our small sample size of patients. A large sample series are needed to assess whether KiSS1 and/or the combination KiSS1/GPR54 are independent markers for RFS in breast cancer.

Considering that KiSS1 was first described as an inhibitor of metastasis, the poor evolution of ERα-positive tumors with high KiSS1 levels was unexpected. The high tumoral KiSS1 and GPR54 levels detected in patients with short RFS may be a normal response to the high metastatic potential of these tumoral cells. In this case, decreases in KiSS1 and GPR54 tumoral expression may lead to metastasis. A reduction in metastasis suppressor gene expression has recently been reported in breast cancer brain metastases (Stark et al. 2005). It would thus be interesting to compare KiSS1 and GPR54 expression levels in brain, liver, or bone metastases from ‘high–high’ tumors with KiSS1 expression in metastases resulting from ‘low–low’ tumors. This high KiSS1 expression in ERα-positive breast tumor cells with poor prognosis may also reflect hormonal resistance to E2, impeding the beneficial action of TAM treatment in these patients. Intratumoral somatic mutations leading to defects in KiSS1 maturation is unlikely as high metastin labeling has been observed with a specific antibody in tumors expressing high KiSS1 mRNA levels. Alternatively, functional inactivation of GPR54 or defects in intracellular pathways stimulated by GPR54 might explain these high levels of GPR54 and KiSS1 expression in tumors with poor prognosis. Although a possible prometastatic effect of KiSS1 cannot be excluded, in such a hypothesis, adjuvant treatment blocking estrogen signaling pathways might be deleterious in ‘low–low’ and ‘high–high’ tumors.

These data show that KiSS1 and GPR54 are estrogen-regulated genes, and their expression levels must therefore be analyzed relative to ERα status. KiSS1 level appears to be an interesting new marker for distinguishing breast tumors from normal mammary tissues. Resistance to anti-estrogens is one of the major challenges in the treatment of ER-positive breast tumors (Osborne 1998). In addition, with gene-expression assays recently proposed to predict tumoral responses to TAM (Paik et al. 2004, 2006, Jansen et al. 2005), our data indicate that an evaluation of KiSS1 and its receptor’s tumoral mRNA levels could be important for the clinical management of breast tumors.

Acknowledgements

The authors thank Amandine Martin for her technical assistance and Alain Caraty for providing Kiss1 antibody and Camille Vainstein for professional
language editing. This work was supported by an Avenir Grant from INSERM, GIS maladies rares, and Fondation pour la Recherche Médicale. The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

References

Mann H & Whitney D 1947 On a test of whether one of two random variables is stochastically larger than other. *Annals of Mathematical Statistics* **18** 50–60.

Plant TM, Ramaswamy S & Dippieoto MJ 2006 Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile

